Feedback and Surround Modulated Boundary Detection | International Journal of Computer Vision Skip to main content
Log in

Feedback and Surround Modulated Boundary Detection

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Edges are key components of any visual scene to the extent that we can recognise objects merely by their silhouettes. The human visual system captures edge information through neurons in the visual cortex that are sensitive to both intensity discontinuities and particular orientations. The “classical approach” assumes that these cells are only responsive to the stimulus present within their receptive fields, however, recent studies demonstrate that surrounding regions and inter-areal feedback connections influence their responses significantly. In this work we propose a biologically-inspired edge detection model in which orientation selective neurons are represented through the first derivative of a Gaussian function resembling double-opponent cells in the primary visual cortex (V1). In our model we account for four kinds of receptive field surround, i.e. full, far, iso- and orthogonal-orientation, whose contributions are contrast-dependant. The output signal from V1 is pooled in its perpendicular direction by larger V2 neurons employing a contrast-variant centre-surround kernel. We further introduce a feedback connection from higher-level visual areas to the lower ones. The results of our model on three benchmark datasets show a big improvement compared to the current non-learning and biologically-inspired state-of-the-art algorithms while being competitive to the learning-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The source code and all the experimental materials are available at https://github.com/ArashAkbarinia/BoundaryDetection.

References

  • Akbarinia, A., & Parraga, C. A. (2016). Biologically plausible boundary detection. In: Proceedings of the British Machine Vision Conference (BMVC), BMVA Press.

  • Angelucci, A., & Shushruth, S. (2014). Beyond the classical receptive field: Surround modulation in primary visual cortex. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 425–444). Cambridge: MIT Press.

    Google Scholar 

  • Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 898–916.

    Article  Google Scholar 

  • Bertasius, G., Shi, J., & Torresani, L. (2015a). Deepedge: A multi-scale bifurcated deep network for top–down contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4380–4389.

  • Bertasius, G., Shi, J., & Torresani, L. (2015b). High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In Proceedings of the IEEE International Conference on Computer Vision, pp. 504–512.

  • Briggs, F., & Martin, U. (2014). Functional properties of cortical feedback to the primate lateral geniculate nucleus. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 315–322). Cambridge: MIT Press.

    Google Scholar 

  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 679–698.

    Article  Google Scholar 

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

    Article  Google Scholar 

  • Cour, T., Benezit, F., & Shi, J. (2005). Spectral segmentation with multiscale graph decomposition. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, IEEE, vol. 2, pp. 1124–1131.

  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, IEEE, vol. 1, pp. 886–893.

  • Díaz-Pernas, F. J., Martínez-Zarzuela, M., Antón-Rodríguez, M., & González-Ortega, D. (2014). Double recurrent interaction v1-v2-v4 based neural architecture for color natural scene boundary detection and surface perception. Applied Soft Computing, 21, 250–264.

    Article  Google Scholar 

  • Dollár, P., & Zitnick, C. L. (2015). Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), 1558–1570.

    Article  Google Scholar 

  • Dollar, P., Tu, Z., & Belongie, S. (2006). Supervised learning of edges and object boundaries. In Computer Vision and Pattern Recognition, 2006. IEEE Computer Society Conference on, IEEE, vol. 2, pp. 1964–1971.

  • Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87.

    Article  Google Scholar 

  • Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181.

    Article  Google Scholar 

  • Field, D. J., Golden, J. R., & Hayes, A. (2014). Contour integration and the association field. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 627–638). Cambridge: MIT Press.

    Google Scholar 

  • Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (2013). A functional and perceptual signature of the second visual area in primates. Nature Neuroscience, 16(7), 974–981.

    Article  Google Scholar 

  • Fu, H., Wang, C., Tao, D., & Black, M. J. (2016). Occlusion boundary detection via deep exploration of context. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 241–250.

  • Gao, S., Yang, K., Li, C., & Li, Y. (2013). A color constancy model with double-opponency mechanisms. In Proceedings of the IEEE International Conference on Computer Vision, pp. 929–936.

  • Georgeson, M. A., & Meese, T. S. (1997). Perception of stationary plaids: The role of spatial filters in edge analysis. Vision Research, 37(23), 3255–3271.

    Article  Google Scholar 

  • Grigorescu, C., Petkov, N., & Westenberg, M. A. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing, 12(7), 729–739.

    Article  Google Scholar 

  • Hansen, T., & Neumann, H. (2008). A recurrent model of contour integration in primary visual cortex. Journal of Vision, 8(8), 8–8.

    Article  Google Scholar 

  • Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(02), 181–197.

    Article  Google Scholar 

  • Hess, R. F. (2014). Spatial scale in visual processing. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 595–615). Cambridge: MIT Press.

    Google Scholar 

  • Hoiem, D., Stein, A. N., Efros, A. A., & Hebert, M. (2007). Recovering occlusion boundaries from a single image. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, IEEE, pp. 1–8.

  • Hupe, J., James, A., Payne, B., Lomber, S., Girard, P., & Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by v1, v2 and v3 neurons. Nature, 394(6695), 784–787.

    Article  Google Scholar 

  • Ichida, J. M., Schwabe, L., Bressloff, P. C., & Angelucci, A. (2007). Response facilitation from the suppressive receptive field surround of macaque v1 neurons. Journal of Neurophysiology, 98(4), 2168–2181.

    Article  Google Scholar 

  • Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1999). Dynamics of spatial summation in primary visual cortex of alert monkeys. Proceedings of the National Academy of Sciences, 96(21), 12073–12078.

    Article  Google Scholar 

  • Kivinen, J. J., Williams, C. K., Heess, N., & Technologies, D. (2014). Visual boundary prediction: A deep neural prediction network and quality dissection. AISTATS, 1, 9.

    Google Scholar 

  • Koenderink, J. J., & Van Doorn, A. J. (1982). The shape of smooth objects and the way contours end. Perception, 11(2), 129–137.

    Article  Google Scholar 

  • Landy, M. S. (2014). Texture analysis and perception. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 639–652). Cambridge: MIT Press.

    Google Scholar 

  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  • Loffler, G. (2008). Perception of contours and shapes: Low and intermediate stage mechanisms. Vision Research, 48(20), 2106–2127.

    Article  Google Scholar 

  • Malach, R., Amir, Y., Harel, M., & Grinvald, A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proceedings of the National Academy of Sciences, 90(22), 10469–10473.

    Article  Google Scholar 

  • Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London B: Biological Sciences, 207(1167), 187–217.

    Article  Google Scholar 

  • Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, IEEE, vol. 2, pp. 416–423.

  • Mély, D. A., Kim, J., McGill, M., Guo, Y., & Serre, T. (2016). A systematic comparison between visual cues for boundary detection. Vision Research, 120, 93–107.

    Article  Google Scholar 

  • Morrone, M. C., & Burr, D. (1988). Feature detection in human vision: A phase-dependent energy model. Proceedings of the Royal Society of London B: Biological Sciences, 235(1280), 221–245.

    Article  Google Scholar 

  • O’Herron, P., & von der Heydt, R. (2011). Representation of object continuity in the visual cortex. Journal of Vision, 11(2), 12–12.

    Article  Google Scholar 

  • Papari, G., & Petkov, N. (2011). Edge and line oriented contour detection: State of the art. Image and Vision Computing, 29(2), 79–103.

    Article  Google Scholar 

  • Parraga, C. A., & Akbarinia, A. (2016). Colour constancy as a product of dynamic centre-surround adaptation. Journal of Vision, 16(12), 214–214.

    Article  Google Scholar 

  • Poirier, F., & Wilson, H. R. (2006). A biologically plausible model of human radial frequency perception. Vision Research, 46(15), 2443–2455.

    Article  Google Scholar 

  • Prewitt, J. M. (1970). Object enhancement and extraction. Picture Processing and Psychopictorics, 10(1), 15–19.

    Google Scholar 

  • Shapley, R., & Hawken, M. J. (2011). Color in the cortex: Single-and double-opponent cells. Vision Research, 51(7), 701–717.

    Article  Google Scholar 

  • Shen, W., Wang, X., Wang, Y., Bai, X., & Zhang, Z. (2015). Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991.

  • Shushruth, S., Ichida, J. M., Levitt, J. B., & Angelucci, A. (2009). Comparison of spatial summation properties of neurons in macaque v1 and v2. Journal of Neurophysiology, 102(4), 2069–2083.

    Article  Google Scholar 

  • Shushruth, S., Nurminen, L., Bijanzadeh, M., Ichida, J. M., Vanni, S., & Angelucci, A. (2013). Different orientation tuning of near-and far-surround suppression in macaque primary visual cortex mirrors their tuning in human perception. The Journal of Neuroscience, 33(1), 106–119.

    Article  Google Scholar 

  • Spillmann, L., Dresp-Langley, B., & Tseng, Ch. (2015). Beyond the classical receptive field: The effect of contextual stimuli. Journal of Vision, 15(9), 1–23.

    Article  Google Scholar 

  • Spratling, M. W. (2013). Image segmentation using a sparse coding model of cortical area v1. IEEE Transactions on Image Processing, 22(4), 1631–1643.

    Article  MathSciNet  Google Scholar 

  • Thériault, C., Thome, N., & Cord, M. (2015). Cortical networks of visual recognition. In G. Cristóbal, L. Perrinet, & M. S. Keil (Eds.), Biologically inspired computer vision: Fundamentals and applications. Wiley-VCH Verlag GmbH & Co. KGaA.

  • Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Computer Vision, 1998. Sixth International Conference on, IEEE, pp. 839–846.

  • Tzvetanov, T., & Dresp, B. (2002). Short-and long-range effects in line contrast integration. Vision Research, 42(22), 2493–2498.

    Article  Google Scholar 

  • Van De Weijer, J., Gevers, T., & Gijsenij, A. (2007). Edge-based color constancy. IEEE Transactions on image processing, 16(9), 2207–2214.

    Article  MathSciNet  Google Scholar 

  • Walther, D. B., Chai, B., Caddigan, E., Beck, D. M., & Fei-Fei, L. (2011). Simple line drawings suffice for functional mri decoding of natural scene categories. Proceedings of the National Academy of Sciences, 108(23), 9661–9666.

    Article  Google Scholar 

  • Watt, R., & Morgan, M. (1985). A theory of the primitive spatial code in human vision. Vision Research, 25(11), 1661–1674.

    Article  Google Scholar 

  • Wei, H., Lang, B., & Zuo, Q. (2013). Contour detection model with multi-scale integration based on non-classical receptive field. Neurocomputing, 103, 247–262.

    Article  Google Scholar 

  • Wilson, H., & Wilkinson, F. (2014). Configural pooling in the ventral pathway. In J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 617–626). Cambridge: MIT Press.

    Google Scholar 

  • Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403.

  • Yang, K., Gao, S., Li, C., & Li, Y. (2013). Efficient color boundary detection with color-opponent mechanisms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2810–2817.

  • Yang, K. F., Li, C. Y., & Li, Y. J. (2014). Multifeature-based surround inhibition improves contour detection in natural images. IEEE Transactions on Image Processing, 23(12), 5020–5032.

    Article  MathSciNet  Google Scholar 

  • Yang, K. F., Gao, S. B., Guo, C. F., Li, C. Y., & Li, Y. J. (2015). Boundary detection using double-opponency and spatial sparseness constraint. IEEE Transactions on Image Processing, 24(8), 2565–2578.

    Article  MathSciNet  Google Scholar 

  • Zeki, S. (1993). A vision of the brain. Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Xavier Otazu, members of the NeuroBiT Group at the Centre de Visió per Computador, Dr. Thorsten Hansen, and anonymous reviewers of the manuscript for their thoughtful insights and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Akbarinia.

Additional information

Communicated by Edwin Hancock, Richard Wilson, Will Smith, Adrian Bors and Nick Pears.

This work was funded by the Spanish Secretary of Research and Innovation (TIN2013-41751-P and TIN2013-49982-EXP) and the CERCA Programme from the Generalitat de Catalunya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarinia, A., Parraga, C.A. Feedback and Surround Modulated Boundary Detection. Int J Comput Vis 126, 1367–1380 (2018). https://doi.org/10.1007/s11263-017-1035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-017-1035-5

Keywords