Abstract
We present a novel and effective skeletonization algorithm for binary and gray-scale images, based on the anisotropic heat diffusion analogy. We diffuse the image in the direction normal to the feature boundaries and also allow tangential diffusion (curvature decreasing diffusion) to contribute slightly. The proposed anisotropic diffusion provides a high quality medial function in the image: it removes noise and preserves prominent curvatures of the shape along the level-sets (skeleton features). The skeleton strength map, which provides the likelihood of a point to be part of the skeleton, is defined by the mean curvature measure. Finally, thin and binary skeleton is obtained by non-maxima suppression and hysteresis thresholding of the skeleton strength map. Our method outperforms the most related and the popular methods in skeleton extraction especially in noisy conditions. Results show that the proposed approach is better at handling noise in images and preserving the skeleton features at the centerline of the shape.





















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arcelli, C., & Baja, G. S. (1992). Ridge points in Euclidean distance maps. Pattern Recognition Letters, 13, 237–243.
Aslan, C., Erdem, A., Erdem, E., & Tari, S. (2008). Disconnected skeleton: shape at its absolute scale. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(12), 2188–2203.
Bai, X., Latecki, L. J., & Liu, W. Y. (2007). Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 449–462.
Blum, H. (1967). A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form, 363–380.
Direkoglu, C. (2009). Feature extraction via heat flow analogy. PhD thesis, University of Southampton, UK.
Direkoglu, C., & Nixon, M. S. (2007). Shape extraction via heat flow analogy. In Proc. int’l. conf. advanced concepts for intelligent vision systems (Vol. 4678, pp. 553–564).
Direkoglu, C., Dahyot, R., & Manzke, M. (2010). Skeleton extraction via anisotropic heat flow. In Proceedings of the British machine vision conference (pp. 61.1–61.11). Guildford: BMVA Press. ISBN 1-901725-40-5. doi:10.5244/C.24.61.
Gorelick, L., Galun, M., & Brandt, A. (2006). Shape representation and classification using the Poisson equation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1991–2005.
Grogorishin, T., Abdel-Hamid, G., & Yang, Y. H. (1996). Skeletonization: an electrostatic field-based approach. Pattern Analysis & Applications, 1(3), 163–177.
Hassouna, M. S., & Farag, A. A. (2005). Robust centerline extraction framework using level sets. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 458–465).
Hummel, R. (1986). Representations based on zero-crossings in scale-space. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 204–209).
Kimia, B. B., & Siddiqi, K. (1994). Geometric heat equation and nonlinear diffusion of shapes and images. In Proc. IEEE int’l. computer vision and pattern recognition (pp. 113–120).
Kimmel, R., Shaked, D., Kiryati, N., & Bruckstein, A. M. (1995). Skeletonization via distance maps and level sets. Computer Vision and Image Understanding, 62(3), 382–391.
Koenderink, J. (1984). The structure of images. Biological Cybernetics, 50, 363–370.
Krinidis, S., & Chatzis, V. (2009). A skeleton family generator via physics-based deformable models. IEEE Transactions on Image Processing, 18(1), 1–11.
Lam, L., Lee, S. W., & Suen, C. Y. (1992). Thinning methodologies—a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9), 869–885.
Latecki, L. J., Lakamper, R., & Eckhardt, T. (2000). Shape descriptors for non-rigid shapes with a single closed contour. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 424–429).
Le Bourgeois, F., & Emptoz, H. (2007). Skeletonization by gradient diffusion and regularization. In Proc. IEEE int’l. conf. image processing (Vol. 3, pp. 33–36).
Lindeberg, T. (1998). Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, 30(2), 117–154.
Macrini, D., Siddiqi, K., & Dickinson, S. (2008). From skeletons to bone graphs: medial abstraction for object recognition. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 1–8).
Malandain, G., & Vidal, S. F. (1998). Euclidean skeletons. Image and Vision Computing, 16(5), 317–327.
Manay, S., & Yezzi, A. (2003). Anti-geometric diffusion for adaptive thresholding and fast segmentation. IEEE Transactions on Image Processing, 12(11), 1310–1323.
Ogniewicz, R. L., & Kubler, O. (1995). Hierarchic Voronoi skeletons. Pattern Recognition, 28(3), 343–359.
Shen, W., Bai, X., Hu, R., Wang, H., & Latecki, L. J. (2011). Skeleton growing and pruning with bending potential ratio. Pattern Recognition, 44(2), 196–209.
Siddiqi, K., Bouix, S., Tannenbaum, A., & Zucker, S. W. (1999). The Hamilton-Jacobi skeleton. In Proc. int’l. conf. computer vision (pp. 828–834).
Tari, S., Shah, J., & Pien, H. (1997). Extraction of shape skeletons from gray-scale images. Computer Vision and Image Understanding, 66(2), 133–146.
Ursell, T. (2007). The diffusion equation—a multi-dimensional tutorial. http://www.rpgroup.caltech.edu/~natsirt/aph162/diffusion.pdf.
Ward, A. D., & Hamarneh, G. (2010). The groupwise medial axis transform for fuzzy skeletonization and pruning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(6), 1084–1096.
Witkin, A. (1983). Scale-space filtering. In Proc. int’l. joint conf. artificial intelligence (pp. 1019–1021).
Xu, C., & Prince, J. L. (1998). Snakes, shapes and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.
Yu, Z., & Bajaj, C. (2004). A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 415–420).
Acknowledgements
This work is supported by an Innovation Partnership between Sony-Toshiba-IBM and Enterprise Ireland (IP-2007-505) and forms part of Trinity’s Sony-Toshiba-IBM European Cell/B.E. Center of Competence.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Direkoglu, C., Dahyot, R. & Manzke, M. On Using Anisotropic Diffusion for Skeleton Extraction. Int J Comput Vis 100, 170–189 (2012). https://doi.org/10.1007/s11263-012-0540-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-012-0540-9