On Using Anisotropic Diffusion for Skeleton Extraction | International Journal of Computer Vision Skip to main content
Log in

On Using Anisotropic Diffusion for Skeleton Extraction

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a novel and effective skeletonization algorithm for binary and gray-scale images, based on the anisotropic heat diffusion analogy. We diffuse the image in the direction normal to the feature boundaries and also allow tangential diffusion (curvature decreasing diffusion) to contribute slightly. The proposed anisotropic diffusion provides a high quality medial function in the image: it removes noise and preserves prominent curvatures of the shape along the level-sets (skeleton features). The skeleton strength map, which provides the likelihood of a point to be part of the skeleton, is defined by the mean curvature measure. Finally, thin and binary skeleton is obtained by non-maxima suppression and hysteresis thresholding of the skeleton strength map. Our method outperforms the most related and the popular methods in skeleton extraction especially in noisy conditions. Results show that the proposed approach is better at handling noise in images and preserving the skeleton features at the centerline of the shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arcelli, C., & Baja, G. S. (1992). Ridge points in Euclidean distance maps. Pattern Recognition Letters, 13, 237–243.

    Article  Google Scholar 

  • Aslan, C., Erdem, A., Erdem, E., & Tari, S. (2008). Disconnected skeleton: shape at its absolute scale. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(12), 2188–2203.

    Article  Google Scholar 

  • Bai, X., Latecki, L. J., & Liu, W. Y. (2007). Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 449–462.

    Article  Google Scholar 

  • Blum, H. (1967). A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form, 363–380.

  • Direkoglu, C. (2009). Feature extraction via heat flow analogy. PhD thesis, University of Southampton, UK.

  • Direkoglu, C., & Nixon, M. S. (2007). Shape extraction via heat flow analogy. In Proc. int’l. conf. advanced concepts for intelligent vision systems (Vol. 4678, pp. 553–564).

    Chapter  Google Scholar 

  • Direkoglu, C., Dahyot, R., & Manzke, M. (2010). Skeleton extraction via anisotropic heat flow. In Proceedings of the British machine vision conference (pp. 61.1–61.11). Guildford: BMVA Press. ISBN 1-901725-40-5. doi:10.5244/C.24.61.

    Chapter  Google Scholar 

  • Gorelick, L., Galun, M., & Brandt, A. (2006). Shape representation and classification using the Poisson equation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1991–2005.

    Article  Google Scholar 

  • Grogorishin, T., Abdel-Hamid, G., & Yang, Y. H. (1996). Skeletonization: an electrostatic field-based approach. Pattern Analysis & Applications, 1(3), 163–177.

    Article  Google Scholar 

  • Hassouna, M. S., & Farag, A. A. (2005). Robust centerline extraction framework using level sets. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 458–465).

    Google Scholar 

  • Hummel, R. (1986). Representations based on zero-crossings in scale-space. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 204–209).

    Google Scholar 

  • Kimia, B. B., & Siddiqi, K. (1994). Geometric heat equation and nonlinear diffusion of shapes and images. In Proc. IEEE int’l. computer vision and pattern recognition (pp. 113–120).

    Chapter  Google Scholar 

  • Kimmel, R., Shaked, D., Kiryati, N., & Bruckstein, A. M. (1995). Skeletonization via distance maps and level sets. Computer Vision and Image Understanding, 62(3), 382–391.

    Article  Google Scholar 

  • Koenderink, J. (1984). The structure of images. Biological Cybernetics, 50, 363–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Krinidis, S., & Chatzis, V. (2009). A skeleton family generator via physics-based deformable models. IEEE Transactions on Image Processing, 18(1), 1–11.

    Article  MathSciNet  Google Scholar 

  • Lam, L., Lee, S. W., & Suen, C. Y. (1992). Thinning methodologies—a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9), 869–885.

    Article  Google Scholar 

  • Latecki, L. J., Lakamper, R., & Eckhardt, T. (2000). Shape descriptors for non-rigid shapes with a single closed contour. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 424–429).

    Chapter  Google Scholar 

  • Le Bourgeois, F., & Emptoz, H. (2007). Skeletonization by gradient diffusion and regularization. In Proc. IEEE int’l. conf. image processing (Vol. 3, pp. 33–36).

    Google Scholar 

  • Lindeberg, T. (1998). Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, 30(2), 117–154.

    Article  Google Scholar 

  • Macrini, D., Siddiqi, K., & Dickinson, S. (2008). From skeletons to bone graphs: medial abstraction for object recognition. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 1–8).

    Google Scholar 

  • Malandain, G., & Vidal, S. F. (1998). Euclidean skeletons. Image and Vision Computing, 16(5), 317–327.

    Article  Google Scholar 

  • Manay, S., & Yezzi, A. (2003). Anti-geometric diffusion for adaptive thresholding and fast segmentation. IEEE Transactions on Image Processing, 12(11), 1310–1323.

    Article  MathSciNet  Google Scholar 

  • Ogniewicz, R. L., & Kubler, O. (1995). Hierarchic Voronoi skeletons. Pattern Recognition, 28(3), 343–359.

    Article  Google Scholar 

  • Shen, W., Bai, X., Hu, R., Wang, H., & Latecki, L. J. (2011). Skeleton growing and pruning with bending potential ratio. Pattern Recognition, 44(2), 196–209.

    Article  Google Scholar 

  • Siddiqi, K., Bouix, S., Tannenbaum, A., & Zucker, S. W. (1999). The Hamilton-Jacobi skeleton. In Proc. int’l. conf. computer vision (pp. 828–834).

    Google Scholar 

  • Tari, S., Shah, J., & Pien, H. (1997). Extraction of shape skeletons from gray-scale images. Computer Vision and Image Understanding, 66(2), 133–146.

    Article  Google Scholar 

  • Ursell, T. (2007). The diffusion equation—a multi-dimensional tutorial. http://www.rpgroup.caltech.edu/~natsirt/aph162/diffusion.pdf.

  • Ward, A. D., & Hamarneh, G. (2010). The groupwise medial axis transform for fuzzy skeletonization and pruning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(6), 1084–1096.

    Article  Google Scholar 

  • Witkin, A. (1983). Scale-space filtering. In Proc. int’l. joint conf. artificial intelligence (pp. 1019–1021).

    Google Scholar 

  • Xu, C., & Prince, J. L. (1998). Snakes, shapes and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, Z., & Bajaj, C. (2004). A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion. In Proc. IEEE int’l. conf. computer vision and pattern recognition (pp. 415–420).

    Google Scholar 

Download references

Acknowledgements

This work is supported by an Innovation Partnership between Sony-Toshiba-IBM and Enterprise Ireland (IP-2007-505) and forms part of Trinity’s Sony-Toshiba-IBM European Cell/B.E. Center of Competence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Direkoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Direkoglu, C., Dahyot, R. & Manzke, M. On Using Anisotropic Diffusion for Skeleton Extraction. Int J Comput Vis 100, 170–189 (2012). https://doi.org/10.1007/s11263-012-0540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0540-9

Keywords