A Variational Framework for Exemplar-Based Image Inpainting | International Journal of Computer Vision Skip to main content
Log in

A Variational Framework for Exemplar-Based Image Inpainting

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Non-local methods for image denoising and inpainting have gained considerable attention in recent years. This is in part due to their superior performance in textured images, a known weakness of purely local methods. Local methods on the other hand have demonstrated to be very appropriate for the recovering of geometric structures such as image edges. The synthesis of both types of methods is a trend in current research. Variational analysis in particular is an appropriate tool for a unified treatment of local and non-local methods. In this work we propose a general variational framework for non-local image inpainting, from which important and representative previous inpainting schemes can be derived, in addition to leading to novel ones. We explicitly study some of these, relating them to previous work and showing results on synthetic and real images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aharon, M., Elad, M., & Bruckstein, A. M. (2006). The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.

    Article  Google Scholar 

  • Almansa, A., Caselles, V., Haro, G., & Rougé, B. (2006). Restoration and zoom of irregularly sampled, blurred, and noisy images by accurate total variation minimization with local constraints. Multiscale Modeling & Simulation, 5(1), 235–272.

    Article  MATH  MathSciNet  Google Scholar 

  • Arias, P., Caselles, V., & Sapiro, G. (2009). A variational framework for non-local image inpainting. In Lecture notes in computer science. EMMCVPR (pp. 345–358). Berlin: Springer.

    Google Scholar 

  • Aujol, J.-F., Ladjal, S., & Masnou, S. (2010). Exemplar-based inpainting from a variational point of view. SIAM Journal on Mathematical Analysis, 42(3), 1246–1285.

    Article  MathSciNet  Google Scholar 

  • Awate, S. P., & Whitaker, R. T. (2005). Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering. In Proc. of CVPR (pp. 44–51).

    Google Scholar 

  • Ballester, C., Bertalmío, M., Caselles, V., Sapiro, G., & Verdera, J. (2001). Filling-in by joint interpolation of vector fields and gray levels. IEEE Transactions on IP, 10(8), 1200–1211.

    MATH  Google Scholar 

  • Barnes, C., Shechtman, E., Finkelstein, A., & Goldman, D. B. (2009). PatchMatch: a randomized correspondence algorithm for structural image editing. In Proc. of SIGGRAPH (pp. 1–11). New York: ACM.

    Google Scholar 

  • Bertalmío, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. In Proc. of SIGGRAPH (pp. 417–424). New York: ACM.

    Chapter  Google Scholar 

  • Bertalmío, M., Vese, L., Sapiro, G., & Osher, S. J. (2003). Simultaneous structure and texture inpainting. IEEE Transactions on IP, 12(8), 882–889.

    Google Scholar 

  • Bornard, R., Lecan, E., Laborelli, L., & Chenot, J.-H. (2002). Missing data correction in still images and image sequences. In Proc. ACM int. conf. on multimedia.

    Google Scholar 

  • Bornemann, F., & März, T. (2007). Fast image inpainting based on coherence transport. Journal of Mathematical Imaging and Vision, 28(3), 259–278.

    Article  MathSciNet  Google Scholar 

  • Brox, T., Kleinschmidt, O., & Cremers, D. (2008). Efficient nonlocal means for denoising of textural patterns. IEEE Transaction on IP, 17(7), 1057–1092.

    MathSciNet  Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2005). A non local algorithm for image denoising. In Proc. of the IEEE conf. on CVPR (Vol. 2, pp. 60–65).

    Google Scholar 

  • Candes, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  • Cao, F., Gousseau, Y., Masnou, S., & Pérez, P. (2009). Geometrically guided exemplar-based inpainting.

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.

    MathSciNet  Google Scholar 

  • Chan, T., & Shen, J. H. (2001). Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics, 62(3), 1019–1043.

    MathSciNet  Google Scholar 

  • Chan, T., Kang, S. H., & Shen, J. H. (2002). Euler’s elastica and curvature based inpaintings. SIAM Journal on Applied Mathematics, 63(2), 564–592.

    MATH  MathSciNet  Google Scholar 

  • Cheng, Y. (1995). Mean shift, mode seeking and clustering. IEEE Transactions on PAMI, 17(8), 790–799.

    Google Scholar 

  • Criminisi, A., Pérez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based inpainting. IEEE Transactions on IP, 13(9), 1200–1212.

    Google Scholar 

  • Csiszár, I. (2008). Axiomatic characterizations of information measures. Entropy, 10(3), 261–273.

    Article  MATH  Google Scholar 

  • Demanet, L., Song, B., & Chan, T. (2003). Image inpainting by correspondence maps: a deterministic approach (Technical report). UCLA.

  • Drori, I., Cohen-Or, D., & Yeshurun, H. (2003). Fragment-based image completion. In Proc. of ACM SIGGRAPH (pp. 303–312). New York: ACM.

    Google Scholar 

  • Efros, A. A., & Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In Proc. of the IEEE ICCV, September 1999 (pp. 1033–1038).

    Google Scholar 

  • Elad, M., Starck, J. L., Querre, P., & Donoho, D. L. (2005). Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Applied and Computational Harmonic Analysis, 19(3), 340–358.

    Article  MATH  MathSciNet  Google Scholar 

  • Esedoglu, S., & Shen, J. H. (2002). Digital image inpainting by the Mumford-Shah-Euler image model. European Journal of Applied Mathematics, 13, 353–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Facciolo, G., Arias, P., Caselles, V., & Sapiro, G. (2009). Exemplar-based interpolation of sparsely sampled images. In Lecture notes in computer science. EMMCVPR (pp. 331–344). Berlin: Springer.

    Google Scholar 

  • Fang, C.-W., & Lien, J.-J. J. (2009). Rapid image completion system using multiresolution patch-based directional and nondirectional approaches. IEEE Transactions on IP, 18(12), 2769–2779.

    Google Scholar 

  • Gilboa, G., & Osher, S. J. (2007). Nonlocal linear image regularization and supervised segmentation. SIAM Multiscale Modeling and Simulation, 6(2), 595–630.

    Article  MATH  MathSciNet  Google Scholar 

  • Gilboa, G., & Osher, S. (2008). Nonlocal operators with applications to image processing. Multiscale Modeling & Simulation, 7(3), 1005–1028.

    Article  MATH  MathSciNet  Google Scholar 

  • Han, J., Zhou, K., Wei, L.-Y., Gong, M., Bao, H., Zhang, X., & Guo, B. (2006). Fast example-based surface texture synthesis via discrete optimization. The Visual Computer, 22(9), 918–925.

    Article  Google Scholar 

  • Harrison, P. (2005). Texture tools. PhD thesis, Monash University.

  • Holtzman-Gazit, M., & Yavneh, I. (2008). A scale-consistent approach to image completion. International Journal of Multiscale Computer Engineering, 6(6), 617–628.

    Article  Google Scholar 

  • Igehy, H., & Pereira, L. (1997). Image replacement through texture synthesis. In Proc. of the IEEE ICIP.

    Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630.

    Article  MathSciNet  Google Scholar 

  • Jia, J., & Tang, C.-K. (2004). Inference of segmented color and texture description by tensor voting. IEEE Transactions on PAMI, 26(6), 771–786.

    Google Scholar 

  • Kawai, N., Sato, T., & Yokoya, N. (2009). Image inpainting considering brightness change and spatial locality of textures and its evaluation. In Ad. in image and video tech. (pp. 271–282). Berlin: Springer.

    Chapter  Google Scholar 

  • Kimball, S., Mattis, P., & the GIMP Dev. Team (2009). GIMP: GNU Image Manipulation Program. http://www.gimp.org/. Version 2.6.8 released on December 2009.

  • Komodakis, N., & Tziritas, G. (2007). Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Transactions on IP, 16(11), 2649–2661.

    MathSciNet  Google Scholar 

  • Kwatra, V., Essa, I., Bobick, A., & Kwatra, N. (2005). Texture optimization for example-based synthesis. ACM Transactions on Graphics, 24(3), 795–802.

    Article  Google Scholar 

  • Levin, A., Zomet, A., & Weiss, Y. (2003). Learning how to inpaint from global image statistics. In Proc. of IEEE ICCV.

    Google Scholar 

  • Levina, E., & Bickel, P. (2006). Texture synthesis and non-parametric resampling of random fields. Annals of Statistics, 34(4).

  • Lezoray, O., Elmoataz, A., & Bougleux, S. (2007). Graph regularization for color image processing. Computer Vision Image Understanding, 107(1–2), 38–55.

    Article  Google Scholar 

  • Mairal, J., Sapiro, G., & Elad, M. (2008). Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Modeling and Simulation, 7(1), 214–241.

    Article  MATH  MathSciNet  Google Scholar 

  • Masnou, S. (2002). Disocclusion: a variational approach using level lines. IEEE Transactions on IP, 11(2), 68–76.

    MathSciNet  Google Scholar 

  • Masnou, S., & Morel, J.-M. (1998). Level lines based disocclusion. In Proc. of IEEE ICIP.

    Google Scholar 

  • Morel, J.-M., & Yu, G. (2008). On the consistency of the SIFT method. Preprint, CMLA, 26.

  • Pérez, P., Gangnet, M., & Blake, A. (2003). Poisson image editing. In Proc. of SIGGRAPH (pp. 313–318). New York: ACM.

    Google Scholar 

  • Pérez, P., Gangnet, M., & Blake, A. (2004). PatchWorks: example-based region tiling for image editing (Technical report). Microsoft Research.

  • Peyré, G. (2009). Manifold models for signals and images. Computer Vision and Image Understanding, 113(2), 249–260.

    Article  Google Scholar 

  • Peyré, G., Bougleux, S., & Cohen, L. (2008). Non-local regularization of inverse problems. In ECCV ’08 (pp. 57–68). Berlin: Springer.

    Google Scholar 

  • Peyré, G., Bougleux, S., & Cohen, L. D. (2009). Non-local regularization of inverse problems. Preprint Hal-00419791.

  • Pizarro, L., Mrázek, P., Didas, S., Grewenig, S., & Weickert, J. (2010). Generalised nonlocal image smoothing. International Journal of Computer Vision, 90, 62–87.

    Article  Google Scholar 

  • Protter, M., Elad, M., Takeda, H., & Milanfar, P. (2009). Generalizing the non-local-means to super-resolution reconstruction. IEEE Transactions on IP, 18(1), 36–51.

    MathSciNet  Google Scholar 

  • Shen, J., Jin, X., & Zhou, C. (2005). Gradient based image completion by solving Poisson equation. In Ad. in multimedia information processing (pp. 257–68).

    Chapter  Google Scholar 

  • Sun, J., Yuan, L., Jia, J., & Shum, H. Y. (2005). Image completion with structure propagation. In Proc. of SIGGRAPH (pp. 861–868). New York: ACM.

    Google Scholar 

  • Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., & Shum, H.-Y. (2002). Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Transactions on Graphics, 21(3), 665–672.

    Article  Google Scholar 

  • Tschumperlé, D., & Deriche, R. (2005). Vector-valued image regularization with PDE’s: a common framework for different applications. IEEE Transactions on PAMI, 27(4).

  • Wei, L.-Y., & Levoy, M. (2000). Fast texture synthesis using tree-structured vector quantization. In Proc. of the SIGGRAPH (pp. 479–488). New York: ACM.

    Chapter  Google Scholar 

  • Wexler, Y., Shechtman, E., & Irani, M. (2007). Space-time completion of video. IEEE Transactions on PAMI, 29(3), 463–476.

    Google Scholar 

  • Zhou, D., & Schölkopf, B. (2005). Regularization on discrete spaces. In Proceedings of the 27th DAGM symposium (pp. 361–368). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Arias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias, P., Facciolo, G., Caselles, V. et al. A Variational Framework for Exemplar-Based Image Inpainting. Int J Comput Vis 93, 319–347 (2011). https://doi.org/10.1007/s11263-010-0418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0418-7

Keywords

Navigation