Coordinate-based addressing for MANET | Telecommunication Systems Skip to main content
Log in

Coordinate-based addressing for MANET

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper proposes a Coordinate-based addressing solution for a mobile ad hoc network, and aims to configure each node with a unique address and reduce the addressing cost and latency. This solution configures all the nodes with unique addresses via one address initialization process and guarantees the address uniqueness in a merged or split network via address update. Finally, this solution is analyzed and evaluated, and the data results show that this solution effectively reduces the addressing cost and latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Omar, M., Hedjaz, S., Rebouh, S., Aouchar, K., Abbache, B., & Tari, A. (2015). On-demand source routing with reduced packets protocol in mobile ad-hoc networks. AEU-International Journal of Electronics and Communications, 69(10), 1429–1436.

    Article  Google Scholar 

  2. Wang, X., Dou, Z., Wang, D., & Sun, Q. (2018). Mobility management for 6lowpan wsn. Computer Networks, 131, 110–128.

    Article  Google Scholar 

  3. Thoppian, M. R., & Prakash, R. (2006). A distributed protocol for dynamic address assignment in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 5(1), 4–19.

    Article  Google Scholar 

  4. Wang, X., Le, D., & Yao, Y. (2015). A cross-layer mobility handover scheme for IPv6-based vehicular networks. International Journal of Electronics and Communications, 69(10), 1514–1524.

    Article  Google Scholar 

  5. Al-Mistarihi, M. F., Al-Shurman, M., & Qudaimat, A. (2011). Tree based dynamic address autoconfiguration in mobile ad hoc networks. Computer Networks, 55(8), 1894–1908.

    Article  Google Scholar 

  6. Kim, N., Ahn, S., & Lee, Y. (2007). AROD: An address autoconfiguration with address reservation and optimistic duplicated address detection for mobile ad hoc networks. Computer Communications, 30(8), 1913–1925.

    Article  Google Scholar 

  7. Wang, X., Cheng, H., & Yao, Y. (2016). Addressing-based routing optimization for 6lowpan wsn in vehicular scenario. IEEE Sensors Journal, 16(10), 3939–3947.

    Article  Google Scholar 

  8. Wang, X., Le, D., & Cheng, H. (2018). Hierarchical addressing scheme for 6LoWPAN WSN. Wireless Networks, 24(4), 1119–1137.

    Article  Google Scholar 

  9. Wang, D., Wang, X., & Dou, Z. (2017). Addressing for 6lowpan based on multi-hop clusters. International Journal of Internet Protocol Technology, 10(4), 243–259.

    Article  Google Scholar 

  10. Wang, X., Cheng, H., & Le, D. (2018). A routing scheme for connecting delay-sensitive urban vehicular networks to the ipv6-based internet. Telecommunication Systems, 1–16.

  11. Wang, X., Le, D., Cheng, H., & Yao, Y. (2015). Location-based address configuration for 6lowpan wireless sensor networks. Wireless Networks, 21(6), 2019–2033.

    Article  Google Scholar 

  12. Ghosh, U., & Datta, R. (2011). A secure dynamic IP configuration scheme for mobile ad hoc networks. Ad Hoc Networks, 9(7), 1327–1342.

    Article  Google Scholar 

  13. Wang, X., & Qian, H. (2014). A distributed address configuration scheme for a MANET. Journal of Network and Systems Management, 22(4), 559–582.

    Article  Google Scholar 

  14. Wang, X., Cheng, H., & Yao, Y. (2016). Addressing with an improved DAD for 6LoWPAN. IEEE Communications Letters, 20(1), 73–76.

    Article  Google Scholar 

  15. Wang, X., Chen, H., & Le, D. (2016). A novel ipv6 address configuration for a 6lowpan-based wban. Journal of Network & Computer Applications, 61, 33–45.

    Article  Google Scholar 

  16. Wang, X., Sun, Q., & Wang, D. (2016). Addressing for 6lowpan wban. Computer Methods and Programs in Biomedicine, 137, 353–363.

    Article  Google Scholar 

  17. Wang, X., Gao, F., & Wu, H. (2017). Design and simulation of address management protocol based on DHCPv6 for large-scale wireless sensor networks. In International Conference on Computer, Information and Telecommunication Systems (pp. 68–72).

  18. Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., & Carney, M. (2003). Dynamic host configuration protocol for IPv6 (DHCPv6). RFC 3315.

  19. Ozturk, Y., & Nagarnaik, V. (2011). A scalable distributed dynamic address allocation protocol for ad-hoc networks. Wireless Networks, 17(2), 357–370.

    Article  Google Scholar 

  20. Gammar, S. M., Amine, E., & Kamoun, F. (2010). Distributed address auto configuration protocol for Manet networks. Telecommunication Systems, 44(1–2), 39–48.

    Article  Google Scholar 

  21. Wang, X., Le, D., & Cheng, H. (2016). Distributed ipv6 address configuration for hybrid manets. Ad Hoc & Sensor Wireless Networks, 33(1), 153–171.

    Google Scholar 

  22. Reshmi, T. R., & Murugan, K. (2015). Filter-based address autoconfiguration protocol (FAACP) for duplicate address detection and recovery in MANETs. Computing, 97(3), 309–331.

    Article  Google Scholar 

  23. Weniger, K. (2005). PACMAN: Passive autoconfiguration for mobile ad hoc networks. IEEE Journal on Selected Areas in Communications, 23(3), 507–519.

    Article  Google Scholar 

  24. Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: cooperative localization in wireless sensor networks. Signal Processing Magazine, IEEE, 22(4), 54–69.

    Article  Google Scholar 

  25. Wang, X., & Zhu, X. (2018). Anycast-based content-centric MANET. IEEE Systems Journal, 12(2), 1679–1687.

    Article  Google Scholar 

  26. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34.

    Article  Google Scholar 

  27. Medepalli, K., & Tobagi, F. A. (2006). Towards performance modeling of IEEE 802.11 based wireless networks: A unified framework and its applications. In INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings (pp. 1–12). IEEE.

  28. Kim, S., Lee, J., & Yeom, I. (2008). Modeling and performance analysis of address allocation schemes for mobile ad hoc networks. IEEE Transactions on Vehicular Technology, 57(1), 490–501.

    Article  Google Scholar 

  29. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless communications and mobile computing, 2(5), 483–502.

    Article  Google Scholar 

  30. Suresh, H. N., Varaprasad, G., & Jayanthi, G. (2014). Notice of violation of IEEE publication principles designing energy routing protocol with power consumption optimization in MANET. IEEE Transactions on Emerging topics in Computing, 2(2), 192–197.

    Article  Google Scholar 

  31. IEEE 802.11 Working Group. (2016). Part11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. ANSI/IEEE Std. 802.11

Download references

Acknowledgements

This work is supported by CERNET Innovation Project (NGII20170106) and “333 Project” foundation (BRA2016438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Z., Wang, X. & Li, Y. Coordinate-based addressing for MANET. Telecommun Syst 71, 121–139 (2019). https://doi.org/10.1007/s11235-018-0499-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0499-0

Keywords