A critical line based boundary surveillance strategy in wireless sensor networks | Telecommunication Systems Skip to main content

Advertisement

Log in

A critical line based boundary surveillance strategy in wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Environment monitoring is an important wireless sensor network application. A traditional method for such applications is to deploy sensors all over a region and aim to cover as much area as possible. However, this method is not only a great waste of money and resources, but also unnecessary and unrealistic. It also invokes many data collisions and places a serious burden on the network protocols. In this paper, we propose a critical line based environment surveillance strategy. We deploy sensors along critical lines instead of all over the region. Our aim is to capture or detect a target or target event rather than tracking it. As coverage is an important factor impacting monitoring, we study boundary coverage capability under several conditions and consider different deployments of sensors. We also compare our surveillance strategy to the traditional one, and the results show that our strategy saves many sensors. Furthermore, we abstract a model of the problem, which provides an optimizing solution to surveillance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. www.irobot.com.

  2. Abrams, Z., Goel, A., & Plotkin, S. (2004). Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In Proc. of IPSN 2004.

    Google Scholar 

  3. Brahim, G., Khan, B., Al-Fuqaha, A., & Guizani, M. (2008). Weak many vs. strong few: reducing BER through packet duplication in power-budgeted wireless connections. International Journal of Sensor Networks, 4(3), 145–154.

    Article  Google Scholar 

  4. Brass, P. (2007). Bounds on coverage and target detection capabilities for models of networks of mobile sensors. ACM Transactions on Sensor Networks, 3(2).

  5. Cai, L., & Shen, X. (2008). Editorial: Energy-efficient algorithm and protocol design in sensor networks. International Journal of Sensor Networks, 4(1/2), 1–2.

    Google Scholar 

  6. Chang, C., Snyder, W. E., & Wang, C. (2008). Secure target localisation in sensor networks using relaxation labelling. International Journal of Sensor Networks, 4(3), 172–184.

    Article  Google Scholar 

  7. Chawathe, S. S. (2007). Organizing hot-spot police patrol routes. In Proc. of IEEE 2007 intelligence and security informatics.

    Google Scholar 

  8. Chen, M., Kwon, T., Mao, S., Yuan, Y., & Leung, V. C. M. (2008). Reliable and energy-efficient routing protocol in dense wireless sensor networks. International Journal of Sensor Networks, 4(1/2), 104–117.

    Article  Google Scholar 

  9. Cheng, M., & Yin, L. (2008). Energy-efficient data gathering algorithm in sensor networks with partial aggregation. International Journal of Sensor Networks, 4(1/2), 48–54.

    Article  Google Scholar 

  10. El-Hajj, W., Kountanis, D., Al-Fuqaha, A., & Guizani, S. (2008). A fuzzy-based virtual backbone routing for large-scale MANETs. International Journal of Sensor Networks, 4(4), 250–259.

    Article  Google Scholar 

  11. Ferrari, G., Cappelletti, F., & Raheli, R. (2008). A simple performance analysis of RFID networks with binary tree collision arbitration. International Journal of Sensor Networks, 4(3), 194–208.

    Article  Google Scholar 

  12. Ferrari, G., Pagliari, R., & Martalo, M. (2008). Decentralised binary detection with non-constant SNR profile at the sensors. International Journal of Sensor Networks, 4(1/2), 23–36.

    Article  Google Scholar 

  13. Gavalas, D., Pantziou, G., Konstantopoulos, C., & Mamalis, B. (2008). ABP: a low-cost, energy-efficient clustering algorithm for relatively static and quasi-static MANETs. International Journal of Sensor Networks, 4(4), 260–269.

    Article  Google Scholar 

  14. Gupta, H., Das, S., & Gu, Q. (2003). Connected sensor cover: selforganization of sensor networks for efficient query execution. In MobiHoc.

    Google Scholar 

  15. Hsin, C., & Liu, M. (2004). Network coverage using low duty-cycled sensors: Random & coordinated sleep algorithm. In Proc. of IPSN.

    Google Scholar 

  16. Hua, G., & Chen, C. (2008). Correlated data gathering in wireless sensor networks based on distributed source coding. International Journal of Sensor Networks, 4(1/2), 13–22.

    Article  Google Scholar 

  17. Jia, Y., Zhao, L., & Ma, B. (2008). A hierarchical clustering-based routing protocol for wireless sensor networks supporting multiple data aggregation qualities. International Journal of Sensor Networks, 4(1/2), 79–91.

    Article  Google Scholar 

  18. Kim, S., Wang, X., & Madihian, M. (2008). Energy efficiency of a per-hop relay selection scheme for sensor networks using cooperative MIMO. International Journal of Sensor Networks, 4(1/2), 118–129.

    Article  Google Scholar 

  19. Krishnamurthy, V., & Sazonov, E. (2008). Reservation-based protocol for monitoring applications using IEEE 802.15.4 sensor networks. International Journal of Sensor Networks, 4(3), 155–171.

    Article  Google Scholar 

  20. Lecuire, V., Duran-Faundez, C., & Krommenacker, N. (2008). Energy-efficient image transmission in sensor networks. International Journal of Sensor Networks, 4(1/2), 37–47.

    Article  Google Scholar 

  21. Lian, J., & Naik, K. (2008). Skipping technique in face routing for wireless ad hoc and sensor networks. International Journal of Sensor Networks, 4(1/2), 92–103.

    Article  Google Scholar 

  22. Liu, C., Wu, K., Xiao, Y., & Sun, B. (2006). Random coverage with guaranteed connectivity: joint scheduling for WSNs. IEEE Transactions on Parallel and Distributed Systems, 17(6), 562–575.

    Article  Google Scholar 

  23. Meguerdichian, S., Koushanfar, F., Potkonjak, M., & Srivastava, M. (2001). Coverage problems in wireless ad-hoc sensor networks. In Proc. of IEEE INFOCOM.

    Google Scholar 

  24. Nguyen, H. T., Nguyen, H. H., & Le-Ngoc, T. (2008). Power-efficient cooperative coding with hybrid-ARQ soft combining for wireless sensor networks in block-fading environment. International Journal of Sensor Networks, 4(1/2), 3–12.

    Article  Google Scholar 

  25. Peter, S., Langendorfer, P., & Piotrowski, K. (2008). Public key cryptography empowered smart dust is affordable. International Journal of Sensor Networks, 4(1/2), 130–143.

    Article  Google Scholar 

  26. Renesse, R., Khengar, P., Friderikos, V., & Aghvami, A. (2008). Quality of service adaptation in mobile ad hoc networks. International Journal of Sensor Networks, 4(4), 238–249.

    Article  Google Scholar 

  27. Shakkottai, S., Srikant, R., & Shroff, N. (2003). Unreliable sensor grids: Coverage, connectivity and diameter. In: Proc. of INFOCOM.

    Google Scholar 

  28. Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In Proc. ICC.

    Google Scholar 

  29. Tian, D., & Georganas, D. (2002). A coverage-preserving node scheduling scheme for large wireless sensor networks. In Proc. of WSNA.

    Google Scholar 

  30. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2003). Integrated coverage and connectivity configuration in wireless sensor networks. In Proc. of Sensys.

    Google Scholar 

  31. Wang, Y., Li, F., & Dahlberg, T. A. (2008). Energy-efficient topology control for three-dimensional sensor networks. International Journal of Sensor Networks, 4(1/2), 68–78.

    Article  Google Scholar 

  32. Wang, G., Zhang, L., & Cao, J. (2008). Hole-shadowing routing in large-scale MANETs. International Journal of Sensor Networks, 4(4), 220–229.

    Article  Google Scholar 

  33. Wu, K., Gao, Y., Li, F., & Xiao, Y. (2005). Lightweight deployment-aware scheduling for wireless sensor networks. ACM/Springer MONET, 10(6), 837–852.

    Google Scholar 

  34. Xiao, Y., & Zhang, Y. (2011, accepted). Divide- and conquer-based surveillance framework using robots, sensor nodes, and RFID tags. Wireless Communications and Mobile Computing (WCMC). Special issue “Emerging Techniques for Wireless Vehicular Communications” accepted. doi:10.1002/wcm.863.

  35. Xiao, Y., Zhang, Y., Peng, M., Chen, H., Du, X., Sun, B., & Wu, K. (2009). Two and three-dimensional intrusion object detection under randomized scheduling algorithms in sensor networks. Computer Networks, 53(14), 2458–2475.

    Article  Google Scholar 

  36. Xiao, Y., Chen, H., Wu, K., Sun, B., Zhang, Y., Sun, X., & Liu, C. (2010). Coverage and detection of a randomized scheduling algorithm in wireless sensor networks. IEEE Transactions on Computers, 59(4), 507–521.

    Article  Google Scholar 

  37. Yan, H., Li, J., Sun, G., Guizani, S., & Chen, H. (2008). A novel power control MAC protocol for mobile ad hoc networks. International Journal of Sensor Networks, 4(4), 230–237.

    Article  Google Scholar 

  38. Ye, F., Zhong, G., Cheng, J., Lu, S., & Zhang, L. (2002). Peas: a robust energy conserving protocol for long-lived sensor networks. In ICNP.

    Google Scholar 

  39. Zeng, P., Zang, C., & Yu, H. (2008). Investigating upper bounds on lifetime for target tracking sensor networks. International Journal of Sensor Networks, 4(3), 185–193.

    Article  Google Scholar 

  40. Zhang, H., & Hou, J. (2004). Maintaining coverage and connectivity in large sensor networks. In Proc. of WTASA.

    Google Scholar 

  41. Zhang, J., & Lok, T. M. (2008). Cooperative protocols for multiple-source multiple-relay wireless networks. International Journal of Sensor Networks, 4(4), 209–219.

    Article  Google Scholar 

  42. Zhang, Y., & Xiao, Y. (2009). A boundary surveillance strategy based on critical line in wireless sensor networks. In Proceedings of the 2009 IEEE international conference on mechatronics and automation (ICMA 2009) (pp. 459–464).

    Google Scholar 

  43. Zou, S., Nikolaidis, I., & Harms, J. (2008). Efficient aggregation using first hop selection in WSNs. International Journal of Sensor Networks, 4(1/2), 55–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Zhang, Y. A critical line based boundary surveillance strategy in wireless sensor networks. Telecommun Syst 52, 423–434 (2013). https://doi.org/10.1007/s11235-011-9453-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9453-0

Keywords

Navigation