Abstract
Neural plasticity has been invoked as a powerful argument against nativism. However, there is a line of argument, which is well exemplified by Pinker (The blank slate: the modern denial of human nature, Penguin, New York, 2002) and more recently by Laurence and Margolis (in: Laurence and Margolis (eds) The conceptual mind: new directions in the study of concepts, MIT, Cambridge, 2015) with respect to concept nativism, according to which even extreme cases of plasticity show important innate constraints, so that one should rather speak of “constrained plasticity”. According to this view, cortical areas are not really equipotential, they perform instead different kinds of computation, follow essentially different learning rules, or have a fixed internal structure acting as a filter for specific categories of inputs. We intend to analyze this argument, in the light of a review of current neuroscientific literature on plasticity. Our conclusion is that Laurence and Margolis are right in their appeal to innate constraints on connectivity—a thesis that is nowadays welcome to both nativists (Mahon and Caramazza in Trends Cogn Sci 15:97–103, 2011) and non-nativists (Pulvermüller et al. in Biol Cybern 108:573–593, 2014)—but there is little support for their claim of further innate differentiation between and within cortical areas. As we will show, there is instead strong evidence that the cortex is characterized by the indefinite repetition of substantially identical computational units, giving rise in any of its portions to Hebbian, input-dependent plasticity. Although this is entirely compatible with the existence of innate constraints on the brain’s connectivity, the cerebral cortex architecture based on a multiplicity of maps correlating with one another has important computational consequences, a point that has been underestimated by traditional connectionist approaches.
Similar content being viewed by others
Notes
For a better idea of the scale level of brain areas reported as similar between mutant and control mice, in Fig. 3a, b of the study of Verhage et al. the marked areas are: the cortex (as a whole), the cerebellar anlage, the tectum, the lateral and medial ganglionic eminence, and the brainstem. A scale far larger than that relevant in the concept nativism discussion.
References
Ackman, J. B., & Crair, M. C. (2014). Role of emergent neural activity in visual map development. Current Opinion in Neurobiology, 24, 166–175.
Ahmed, B., Cordery, P. M., McLelland, D., Bair, W., & Krug, K. (2011). Long-range clustered connections within extrastriate visual area V5/MT of the rhesus macaque. Cerebral Cortex, 22, 60–73.
Alfano, C., & Studer, M. (2013). Neocortical arealization: Evolution, mechanisms, and open questions. Developmental Neurobiology, 73, 411–447.
Almeida, J., He, D., Chen, Q., Mahon, B. Z., Zhang, F., Gonçlves, O., et al. (2015). Decoding visual location from neural patterns in the auditory cortex of the congenitally deaf. Psychological Science, 26, 1771–1782.
Aronoff, R., Matyas, F., Mateo, C., Ciron, C., Schneider, B., & Petersen, C. C. (2010). Long-range connectivity of mouse primary somatosensory barrel cortex. European Journal of Neuroscience, 31, 2221–233.
Artola, A., & Singer, W. (1987). Long term potentiation and NMDA receptors in rat visual cortex. Nature, 330, 649–652.
Ashby, W. R. (1947). Principles of the self-organizing dynamic system. The Journal of General Psychology, 37, 125–128.
Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269–289.
Bear, M., & Kirkwood, A. (1993). Neocortical long term potentiation. Current Opinion in Neurobiology, 3, 197–202.
Bednar, J. A., & Miikkulainen, R. (2006). Joint maps for orientation, eye, and direction preference in a self-organizing model of v1. Neurocomputing, 69, 1272–1276.
Bedny, M., Konkle, T., Pelphrey, K., Saxe, R., & Pascual-Leone, A. (2010). Sensitive period for a multimodal response in human visual motion area MT/MST. Current Biology, 20, 1900–1906.
Bedny, M., Pascual-Leone, A., Dravida, S., & Saxe, R. (2012). A sensitive period for language in the visual cortex: Distinct patterns of plasticity in congenitally versus late blind adults. Brain and Language, 122, 162–170.
Ben-Ari, Y. (2002). Excitatory actions of gaba during development: The nature of the nurture. Nature Reviews Neuroscience, 3, 728–739.
Ben-Ari, Y., Gaiarsa, J. L., Tyzio, R., & Khazipov, R. (2007). GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiological Reviews, 87, 1215–1284.
Berlin, R. (1858). Beitrag zur structurlehre der grosshirnwindungen. Ph.D. Thesis, Medicinischen Fakultät zu Erlangen.
Berlucchi, G., & Buchtel, H. (2009). Neuronal plasticity: Historical roots and evolution of meaning. Nature Reviews Neuroscience, 192, 307–319.
Bermúdez-Rattoni, F. (Ed.). (2007). Neural plasticity and memory: From genes to brain imaging. Boca Raton, FL: CRC Press.
Beul, S. F., & Hilgetag, C. C. (2015). Towards a ’canonical’ agranular cortical microcircuit. Frontiers in Neuroanatomy, 8, 165.
Bliss, T., & Collingridge, G. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.
Bliss, T., & Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.
Blumberg, M. S., Freeman, J. H., & Robinson, S. (Eds.). (2010). Oxford handbook of developmental behavioral neuroscience. Oxford: Oxford University Press.
Bontempi, B., Silva, A., & Christen, Y. (Eds.). (2007). Memories: Molecules and circuits. Berlin: Springer.
Born, R., Trott, A. R., & Hartmann, T. S. (2015). Cortical magnification plus cortical plasticity equals vision? Vision Research, 111, 161–169.
Bosman, C. A., & Aboitiz, F. (2015). Functional constraints in the evolution of brain circuits. Frontiers in Neuroscience, 9, 303.
Bourne, J. A., & Rosa, M. G. (2006). Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: Early maturation of the middle temporal area (MT). Cerebral Cortex, 16, 405–414.
Braak, H. (1974). On the structure of the human archicortex. I. The cornu ammonis. A Golgi and pigment architectonic study. Cell Tissue Research, 152, 349–383.
Braddick, O., Atkinson, J., & Innocenti, G. M. (Eds.). (2011). The developing brain: From developmental biology to behavioral disorders and their remediation. Cambridge: Cambridge University Press.
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirmrinde. Leipzig: Barth.
Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.
Burkhalter, A., Bernardo, K. L., & Charles, V. (1993). Development of local circuits in human visual cortex. Journal of Neuroscience, 13, 1916–1931.
Burton, H., Sinclair, R. J., & Agato, A. (2012). Recognition memory for Braille or spoken words: An fMRI study in early blind. Brain, 1438, 22–34.
Burton, H., Snyder, A. Z., DIamond, J., & Raichle, M. E. (2002). Adaptive changes in early and late blind: A fMRI study of verb generation to heard nouns. Journal of Neurophysiology, 88, 3359–3371.
Bush, P. C., & Mainen, Z. F. (2015). Columnar architecture improves noise robustness in a model cortical network. PLoS ONE, 10(3), e0119072.
Butz, M., Wörgötter, F., & van Ooyen, A. (2009). Activity-dependent structural plasticity. Brain Research Reviews, 60, 287–305.
Cahalane, D. J., Charvet, C. J., & Finlay, B. L. (2012). Systematic, balancing gradients in neuron density and number across the primate isocortex. Frontiers in Nauroanatomy, 6, 28.
Carandini, M., & Heeger, D. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51–62.
Carlo, C. N., & Stevens, C. F. (2013). Structural uniformity of neocortex, revisited. Proceedings of the Natural Academy of Science of United States of America, 110, 719–725.
Caroni, P., Donato, F., & Muller, D. (2012). Structural plasticity upon learning: Regulation and functions. Nature Reviews Neuroscience, 13, 478–490.
Charvet, C. J., Cahalane, D. J., & Finlay, B. L. (2015). Systematic, cross-cortex variation in neuron numbers in rodents and primates. Cerebral Cortex, 25(1), 147–160.
Cheetham, C. E., Barnes, S. J., Albieri, G., Knott, G. W., & Finnerty, G. T. (2014). Pansynaptic enlargement at adult cortical connections strengthened by experience. Cerebral Cortex, 24, 521–531.
Churchland, P. M. (1988). Perceptual plasticity and theoretical neutrality: A reply to Jerry Fodor. Philosophy of Science, 55, 167–187.
Cohen-Tannoudji, M., Babinet, C., & Wassef, M. (1994). Early determination of a mouse somatosensory cortex marker. Nature, 368, 460–463.
Collignon, O., Dormal, G., & Lepore, F. (2013). Building the brain in the dark: Functional and specific crossmodal reorganization in the occipital cortex of blind individuals. In J. K. Steeves & L. R. Harris (Eds.), Plasticity in sensory systems (pp. 114–137). Cambridge: Cambridge University Press.
Colombo, J. (1982). The critical period concept: Research, methodology, and theoretical issues. Psychological Bulletin, 91, 260–275.
Cooke, S. F., & Bear, M. F. (2013). How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex. Philosophical Transactions of the Royal Society B, 369, 20130284.
Cowie, F. (1999). What’s within? Nativism reconsidered. Oxford: Oxford University Press.
Crair, M. C. (1999). Neuronal activity during development: Permissive or instructive? Current Opinion in Neurobiology, 9, 88–93.
Crowley, J. C., & Katz, L. C. (2002). Ocular dominance development revisited. Current Opinion in Neurobiology, 12, 104–109.
Crozier, R. A., Wang, Y., Liu, C. H., & Bear, M. F. (2007). Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. Proceedings of the Natural Academy of Science of United States of America, 104, 1383–1388.
Curtiss, S. (1977). Genie—A psycholinguistic study of a modern-day wild child. New York: Academic Press.
Danelli, L., Cossu, G., Berlingeri, M., Bottini, G., Sberna, M., & Paulesu, E. (2013). Is a lone right hemisphere enough? neurolinguistic architecture in a case with a very early left hemispherectomy. Neurocase, 19, 209–231.
Deco, G., & Rolls, E. (2004). A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research, 44, 621–642.
Desai, N. S., Cudmore, R. H., Nelson, S. B., & Turrigiano, G. G. (2002). Critical periods for experience-dependent synaptic scaling in visual cortex. Nature Neuroscience, 5, 783–789.
Dougherty, R. F., Koch, V. M., Brewer, A. A., Fischer, B., Modersitzki, J., & Wandell, B. A. (2003). Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of Vision, 3, 586–598.
Douglas, R. J., Martin, K. A., & Whitteridge, D. (1989). A canonical microcircuit for neocortex. Neural Computation, 1, 480–488.
Eliasmith, C., & Anderson, C. H. (2003). Neural engineering computation, representation, and dynamics in neurobiological systems. Cambridge, MA: MIT.
Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness—A connectionist perspective on development. Cambridge, MA: MIT.
Elston, G. N. (2003). Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function. Cerebral Cortex, 13, 1124–1138.
Elston, G. N., Benavides-Piccione, R., Elston, A., Manger, P. R., & DeFelipe, J. (2011). Pyramidal cells in prefrontal cortex of primates: Marked differences in neuronal structure among species. Frontiers in Nauroanatomy, 5, 2.
Fahle, M., & Poggio, T. (Eds.). (2002). Perceptual learning. Cambridge, MA: MIT.
Fallon, J. B., Irvine, D. R. F., & Shepherd, R. K. (2009). Neural prostheses and brain plasticity. Journal of Neural Engineering, 6, 065008.
Feldman, D. E. (2000). Timing-based LPT and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45–56.
Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annual Review of Neuroscience, 32, 33–55.
Feldman, D. E. (2012). The spike-timing dependence of plasticity. Neuron, 75, 556–571.
Ferster, D., & Lindström, S. (1983). An intracellular analysis of geniculocortical connectivity in area 17 of the cat. Journal of Physiology, 342, 181–215.
Forest, D. (2014). Neuroconstructivism: A developmental turn in cognitive neuroscience? In C. T. Wolfe (Ed.), Brain theory—Essays in critical neurophilosophy (pp. 68–87). London: Palgrave Macmillan.
Fox, K. (2002). Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience, 111, 799–814.
Fuchs, E., & Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014(ID541), 870.
Fuster, J. M. (2001). The prefrontal cortex—An update: Time is of the essence. Neuron, 30, 319–333.
Fuster, J. M. (2008). The prefrontal cortex (4th ed.). New York: Academic Press.
Gao, W. J., & Pallas, S. (1999). Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections. Journal of Neuroscience, 19, 7940–7950.
Garagnani, M., Wennekers, T., & Pulvermüller, F. (2000). Recruitment and consolidation of cell assemblies for words by way of Hebbian learning and competition in a multi-layer neural network. Cognitive Computation, 1, 160–197.
Gilbert, C. D., & Wiesel, T. N. (1983). Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience, 3, 1116–1133.
Gilbert, C. D., & Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. Journal of Neuroscience, 9, 2432–2442.
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the Natural Academy of Science of United States of America, 101, 8174–8179.
Gottfried, J. A. (2010). Central mechanisms of odour object perception. Nature Reviews Neuroscience, 11, 628–641.
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539–559.
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14, 357–364.
Haeusler, S., Schuch, K., & Maass, W. (2009). Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. Journal of Physiology-Paris, 21, 1229–1243.
Haken, H. (1978). Synergetics—An introduction, nonequilibrium phase transitions and self-organization in physics, chemistry and biology (2nd ed.). Berlin: Springer.
Harris, J., & Rubel, E. (2006). Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 216–217, 127–137.
Harris, K. D., & Shepherd, G. M. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18, 170–181.
Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391–399.
Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6, 887–888.
Herculano-Houzel, S., Collins, C. E., Wong, P., Kaas, J. H., & Lent, R. (2008). The basic nonuniformity of the cerebral cortex. Proceedings of the Natural Academy of Science of United States of America, 34, 12593–12598.
Herculano-Houzel, S., & Lent, R. (2005). Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain. Journal of Neuroscience, 25, 2518–2521.
Herculano-Houzel, S., Catania, K., Manger, P. R., & Kaas, J. H. (2015). Mammalian brains are made of these: A dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain, Behavior and Evolution, 86, 145–163.
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience & Biobehavioral Reviews, 34, 575–583.
Holtmaat, A., & Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10, 647–658.
Homae, F., Watanabe, H., Otobe, T., Nakano, T., Go, T., Konishi, Y., et al. (2010). Development of global cortical networks in early infancy. Journal of Neuroscience, 30, 4877–4882.
Hou, C., Pettet, M. W., Sampath, V., Candy, T. R., & Norcia, A. M. (2003). Development of the spatial organization and dynamics of lateral interactions in the human visual system. Journal of Neuroscience, 23, 8630–8640.
Howard, J. D., Plailly, J., Grueschow, M., Haynes, J. D., & Gottfried, J. A. (2009). Odor quality coding and categorization in human posterior piriform cortex. Nature Neuroscience, 12, 932–938.
Huang, S., Rozas, C., Trevino, M., Contreras, J., Yang, S., Song, L., et al. (2014). Associative Hebbian synaptic plasticity in primate visual cortex. Journal of Neuroscience, 34, 7575–7579.
Hubel, D., & Wiesel, T. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148, 574–591.
Hubel, D., & Wiesel, T. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017.
Huttenlocher, P. R. (2002). Neural plasticity—The effects of environment on the development of the cerebral cortex. Cambridge, MA: Harvard University Press.
Innocenti, G. M., & Price, D. (2005). Exuberance in the development of cortical networks. Nature Reviews Neuroscience, 6, 955–965.
Ito, M. (1989). Long-term depression. Annual Review of Neuroscience, 12, 85–102.
James, W. (1890). The principles of psychology. New York: Holt, Rinehart and Winston.
Jones, E. G. (1984). Identication and classication of intrinsic circuit elements in the neocortex. In G. Edelman, W. Gall, & W. Cowan (Eds.), Dynamic Aspects of neocortical function (pp. 7–40). New York: Wiley.
Jones, E. G. (1985). The Thalamus. New York: Plenum Press.
Kaas, J. H. (1997). Plasticity of sensory and motor maps in adult mammals. Annual Review of Neuroscience, 14, 137–167.
Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183, 339–373.
Kaplan, D. M., & Craver, C. F. (2011). Towards a mechanistic philosophy of neuroscience. In S. French & J. Saatsi (Eds.), Continuum companion to the philosophy of science (pp. 268–292). London: Continuum Press.
Karbowski, J. (2014). Constancy and trade-offs in the neuroanatomical and metabolic design of the cerebral cortex. Frontiers in Neural Circuits, 8, 9.
Karlen, S. J., Hunt, D. L., & Krubitzer, L. (2010). Cross-modal plasticity in the mammalian neocortex. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 357–374). Oxford: Oxford University Press.
Karlen, S. J., Kahn, D., & Krubitzer, L. (2006). Early blindness results in abnormal corticocortical and thalamo cortical connections. Neuroscience, 142, 843–858.
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT.
Katz, B. (1971). Quantal mechanism of neural transmitter release. Science, 173, 123–126.
Katz, L., & Shatz, C. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–1138.
Khazipov, R., & Buzsáki, G. (2010). Early patterns of electrical activity in the developing cortex. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 161–177). Oxford: Oxford University Press.
Khazipov, R., & Colonnese, M. (2013). Neonatal cortical rhythms. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain (pp. 131–153). New York: Academic Press.
Kisvárday, Z. F., Tóth, E., Rausch, M., & Eysel, U. T. (1997). Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cerebral Cortex, 7, 605–618.
Ko, H., Mrsic-Flogel, T. D., & Hofer, S. B. (2014). Emergence of feature-specific connectivity in cortical microcircuits in the absence of visual experience. Journal of Neuroscience, 34, 9812–9816.
Kolb, B. (1995). Brain plasticity and behavior. Mahwah, NJ: Lawrence Erlbaum Associates.
Kolb, B., & Gibb, R. (2014). Searching for the principles of brain plasticity and behavior. Cortex, 58, 251–260.
Kovács, I., Kozma, P., Fehér, A., & Benedek, G. (1999). Late maturation of visual spatial integration in humans. Proceedings of the Natural Academy of Science of United States of America, 96, 12204–12209.
Krubitzer, L. (1995). The organization of neocortex in mammals: Are species differences really so different? Trends in Neuroscience, 8, 408–417.
Krubitzer, L., & Kaas, J. H. (2005). The evolution of the neocortex in mammals: How is phenotypic diversity generated? Current Opinion in Neurobiology, 15, 444–453.
Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67, 713–727.
Laurence, S., & Margolis, E. (2015). Concept nativism and neuralplasticity. In S. Laurence & E. Margolis (Eds.), Conceptual mind: New directions in the study of concepts. Cambridge, MA: MIT.
Levy, W., & Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8, 791–797.
Li, W., Luxenberg, E., Parrish, T., & Gottfried, J. A. (2006). Learning to smell the roses: Experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron, 52, 1097–1108.
Lledo, P. M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews Neuroscience, 7, 179–193.
Lorente de Nó, R. (1938). Architectonics and structure of the cerebral cortex. In J. Fulton (ed.), Physiology of the nervous system (pp. 291–330). Oxford, UK: Oxford University Press.
Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136, 659–676.
Mahon, B. Z. (2015). Missed connections: A connectivity constrained account of the representation and organization of object concepts. In S. Laurence & E. Margolis (Eds.), The conceptual mind: New directions in the study of concepts. Cambridge, MA: MIT.
Mahon, B. Z., & Caramazza, A. (2011). What drives the organization of object knowledge in the brain? The distributed domain-specific hypothesis. Trends in Cognitive Sciences, 15, 97–103.
Majewska, A. K., & Sur, M. (2006). Plasticity and specicity of cortical processing networks. Trends in Neuroscience, 26, 323–329.
Marcus, G. F., Marblestone, A., & Dean, T. (2014). The atoms of neural computation. Science, 346, 551–552.
Marik, S. A., Yamahachi, H., McManus, J. N. J., Szabo, G., & Gilbert, C. D. (2010). Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biology, 8, 1–16.
Markram, H., Gerstner, W., & Sjöström, P. J. (2011). A history of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 3, 4.
Markram, H., Gerstner, W., & Sjöström, P. J. (2012). Spike-timing-dependent plasticity: A comprehensive overview. Frontiers in Synaptic Neuroscience, 4, 2.
Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.
Marr, D. (1970). A theory for cerebral neocortex. Proceedings of the Royal Society of London B, 176, 161–234.
Mason, C. (2009). The development of developmental neuroscience. Journal of Neuroscience, 29(2735–12), 747.
Mastronarde, D. N. (1983). Correlated firing of retinal ganglion cells: I. Spontaneously active inputs in X- and Y-cells. Journal of Neuroscience, 14, 409–441.
May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, 15, 475–482.
McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et al. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14, 348–356.
Meister, M., Wong, R., Daylor, D., & Shatz, C. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939–943.
Menary, R. (2014). Neural plasticity, neuronal recycling and niche construction. Minds and Language, 29, 286–303.
Miikkulainen, R., Bednar, J., Choe, Y., & Sirosh, J. (2005). Computational maps in the visual cortex. New York: Springer.
Miller, K. D. (2016). Canonical computations of cerebral cortex. Current Opinion in Neurobiology, 37, 75–84.
Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT.
Mitani, A., Shimokouchi, M., Itoh, K., Nomura, S., Kudo, M., Mizuno, N. (1985). Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. Journal of Comparative Neurology, 235, 430–447
Møller, A. R. (Ed.). (2006). Neural plasticity and disorders of the nervous system. Cambridge: Cambridge University Press.
Mountcastle, V. (1957). Modality and topographic properties of single neurons in cats somatic sensory cortex. Journal of Neurophysiology, 20, 408–434.
Nakamura, H. (2013). Area patterning of the mammalian cortex. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS (pp. 45–60). New York: Academic Press.
Newport, E., Bavelier, D., & Neville, H. J. (2001). Critical thinking about critical periods: Perspectives on a critical period for language acquisition. In E. Dupoux (Ed.), Language, brain, and cognitive development: Essays in honor of Jacques Mehler (pp. 481–502). Cambridge, MA: MIT.
Nieuwenhuys, R. (1994). The neocortex. Anatomy and Embryology, 190, 307–337.
Nieuwenhuys, R., Voogd, J., & van Huijzen, C. (2008). The human central nervous system. Berlin: Springer.
Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (Eds.). (2003). Niche construction: The neglected process in evolution. Princeton, NJ: Princeton University Press.
Ohl, F. W., Scheich, H., & Freeman, W. J. (2001). Change in pattern of ongoing cortical activity with auditory category learning. Nature, 412, 733–736.
O’Leary, D. D., Chou, S. J., & Sahara, S. (2007). Area patterning of the mammalian cortex. Neuron, 56, 252–269.
O’Leary, D. D., Stocker, A., & Zembrzycki, A. (2013). Area patterning of the mammalian cortex. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS (pp. 61–85). New York: Academic Press.
Oppenheim, R. W., Milligan, C., & Sun, W. (2010). Programmed cell death during nervous system development: Mechanisms, regulation, functions, and implications for neurobehavioral ontogeny. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 76–107). Oxford: Oxford University Press.
Paillard, J. (1976). Réflexions sur l’usage du concept de plasticité en neurobiology. Journal de Psychologie Normale et Pathologique, 1, 33–47.
Paille, V., Fino, E., Du, K., Morera-Herreras, T., Perez, S., Kotaleski, J. H., et al. (2013). GABAergic circuits control spike-timing-dependent plasticity. Journal of Neuroscience, 33, 9353–9363.
Palmer, S. (1999). Vision science—Photons to phenomenology. Cambridge, MA: MIT.
Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.
Perfors, A., Tenenbaum, J. B., & Regier, T. (2011). The learnability of abstract syntactic principles. Cognition, 1418, 306–338.
Piccinini, G. (2007). Computational modeling vs. computational explanation: Is everything a Turing Machine, and does it matter to the philosophy of mind? Australasian Journal of Philosoph, 85, 93–115.
Pinker, S. (2002). The Blank Slate: The modern denial of human nature. New York: Penguin.
Plebe, A. (2007). A model of angle selectivity development in visual area V2. Neurocomputing, 70, 2060–2066.
Plebe, A. (2012). A model of the response of visual area V2 to combinations of orientations. Network: Computation in Neural Systems, 23, 105–122.
Plebe, A., Mazzone, M., & De La Cruz, V. M. (2010). First words learning: A cortical model. Cognitive Computation, 2, 217–229.
Prinz, J. (2002). Furnishing the mind—Concepts and their perceptual basis. Cambridge, MA: MIT.
Prinz, J. (2012). Beyond human nature—How culture and experience shape the human mind. New York: Norton & Co.
Proulx, M. J. (2010). Synthetic synaesthesia and sensory substitution. Consciousness and Cognition, 19, 501–503.
Proulx, M. J., Brown, D. J., Pasqualotto, A., & Meijer, P. (2014). Multisensory perceptual learning and sensory substitution. Neuroscience and Biobehavioral Reviews, 41, 16–25.
Pulvermüller, F., Garagnani, M., & Wennekers, T. (2014). Thinking in circuits: Toward neurobiological explanation in cognitive neuroscience. Biological Cybernetics, 108, 573–593.
Quartz, S. R. (2003). Toward a developmental evolutionary psychology: Genes, development, and the evolution of the human cognitive architecture. In S. Scher & F. Rauscher (Eds.), Evolutionary psychology—Alternative approaches (pp. 185–210). Dordrecht: Kluwer.
Rakic, P. (2008). Confusing cortical columns. Proceedings of the Natural Academy of Science of Unites States of America, 34, 12099–12100.
Rakica, P., Ayoub, A. E., Breunig, J. J., & Dominguez, M. H. (2009). Decision by division: Making cortical maps. Trends in Neuroscience, 32, 291–301.
Ramón y Cajal, S. (1894). The croonian lecture: La fine structure des centres nerveux. Proceedings of the Royal Society of London, 55, 444–468.
Ramón y Cajal, S. (1906). In J. DeFelipe & E. G. Jones (Eds.), Cajal on the cerebral cortex: An annotated translation of the complete writings (p. 1988). Oxford: Oxford University Press.
Reali, F., & Christiansen, M. H. (2005). Uncovering the richness of the stimulus: Structure dependence and indirect statistical evidence. Cognitive Science, 29, 1007–1028.
Rockel, A., Hiorns, R., & Powell, T. (1980). The basic uniformity in structure of the neocortex. Brain, 103, 221–244.
Roe, A. W., Garraghty, P., Esguerra, M., & Sur, M. (1990). A map of visual space induced in primary auditory cortex. Science, 250, 818–820.
Roe, A. W., Garraghty, P., & Sur, M. (1987). Retinotectal W cell plasticity: Experimentally induced retinal projections to auditory thalamus in ferrets. Soc Neurosci Abst, 13, 1023.
Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2009). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14, 64–71.
Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 906–914.
Roubertouxs, P. L., Jamon, M., & Carlier, M. (2010). Brain development: Genes, epigenetic events, and maternal environments. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 51–75). Oxford: Oxford University Press.
Rubenstein, J. L. R., & Rakic, P. (Eds.). (2013a). Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain. New York: Academic Press.
Rubenstein, J. L. R., & Rakic, P. (Eds.). (2013b). Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS. New York: Academic Press.
Ryder, D. (2004). SINBAD neurosemantics: A theory of mental representation. Minds and Machines, 19, 211–240.
Sakurai, Y. (2014). Brain–machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain. Frontiers in Systems Neuroscience, 8, 104.
Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11, 53–60.
Schuster, C. M., Davis, G. W., Fetter, R. D., & Goodman, C. S. (1996). Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron, 17, 655–667.
Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation modules in auditory cortex. Nature, 404, 841–847.
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 3589–3594.
Shepherd, G. M. (1979). The Synaptic Organization of the Brain (2nd ed.). Oxford, UK: Oxford University Press.
Shepherd, G. M. (1988). A basic circuit for cortical organization. In M. S. Gazzaniga (Ed.), Perspectives on memory research (pp. 93–134). Cambridge, MA: MIT.
Shulz, D., & Feldman, D. (2013). Spike timing-dependent plasticity. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain (pp. 155–181). New York: Academic Press.
Sirois, S., Spratling, M., Thomas, M. S. C., Westermann, G., Mareschal, D., & Johnson, M. H. (2008). Preécis of neuroconstructivism: How the brain constructs cognition. Behavioral and Brain Science, 31, 321–356.
Squire, L., & Kandel, E. (1999). Memory: From mind to molecules. New York: Scientific American Library.
Srinivasan, S., Carlo, C. N., & Stevens, C. F. (2015). Predicting visual acuity from the structure of visual cortex. Proceedings of the Natural Academy of Science USA, 112, 7815–7820.
Steeves, J. K., & Harris, L. R. (Eds.). (2013). Plasticity in sensory systems. Cambridge: Cambridge University Press.
Stettler, D. D., Yamahachi, H., Li, W., Denk, W., & Gilbert, C. D. (2006). Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron, 49, 877–887.
Stevens, J. L. R., Law, J. S., Antolik, J., & Bednar, J. A. (2013). Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. JNS, 33, 15747–15766.
Stiles, J. (2011). Brain development and the nature versus nurture debate. In O. Braddick, J. Atkinson, & G. M. Innocenti (Eds.), The developing brain: From developmental biology to behavioral disorders and their remediation (pp. 3–22). Cambridge: Cambridge University Press.
Stiles, J., Reilly, J. S., Levine, S. C., Trauner, D. A., & Nass, R. (2012). Neural plasticity and cognitive development: Insights from children with perinatal brain injury. Oxford: Oxford University Press.
Su, C. Y., Menuz, K., & Carlson, J. R. (2009). Olfactory perception: Receptors, cells, and circuits. Cell, 139, 45–59.
Sur, M. (1989). Visual plasticity in the auditory pathway: Visual inputs induced into auditory thalamus and cortex illustrate principles of adaptive organization in sensory systems. In Dynamic interactions in neural networks: Models and data (pp. 35–52). Berlin: Springer.
Sur, M., & Leamey, C. A. (2001). Development and plasticity of cortical areas and networks. Nature Reviews Neuroscience, 2, 251–262.
Sur, M., & Rubenstein, J. L. R. (2005). Patterning and plasticity of the cerebral cortex. Science, 310, 805–810.
Swingley, D. (2010). Fast mapping and slow mapping in children’s word learning. Language Learning and Development, 6, 179–183.
Trachtenberg, J. T., & Stryker, M. P. (2001). Rapid anatomical plasticity of horizontal connections in the developing visual cortex. Journal of Neuroscience, 21, 3476–3482.
Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E., & Bergles, D. E. (2007). The origin of spontaneous activity in the developing auditory system. Nature, 450, 50–56.
Turrigiano, G. G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Review of Neuroscience, 34, 89–103.
Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 391, 892–896.
Ursino, M., & La Cara, G. E. (2004). Comparison of different models of orientation selectivity based on distinct intracortical inhibition rules. Vision Research, 44, 1641–1658.
van Ooyen, A. (2001). Competition in the development of nerve connections: A review of models. Network: Computation in Neural Systems, 12, R1–R47.
Verhage, M., Maia, A. S., Plomp, J. J., Brussaard, A. B., Heeroma, J. H., Vermeer, H., et al. (2000). Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science, 287, 864–869.
Vogt, C., & Vogt, O. (1919). Allgemeine Ergebnisse unserer Hirnforschung. Journal für Psychologie und Neurologie, 25, 279–461.
von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate cortex. Kybernetic, 14, 85–100.
von der Malsburg, C. (1995). Network self-organization in the ontogenesis of the mammalian visual system. In S. F. Zornetzer, J. Davis, C. Lau, & T. McKenna (Eds.), An introduction to neural and electronic networks (2nd ed., pp. 447–462). New York: Academic Press.
von Economo, C., & Koskinas, G. N. (1925). Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Berlin: Springer.
von Melchner, L., Pallas, S. L., & Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404, 871–876.
Wang, X., Merzenich, M. M., Sameshima, K., & Jenkins, W. M. (1995). Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature, 378, 71–75.
Watt, A. J., & Desai, N. S. (2010). Homeostatic plasticity and STDP: Keeping a neuron’s cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2, 5.
Wattam-Bell, J., Birtles, D., Nyström, P., von Hofsten, C., Rosander, K., Anker, S., et al. (2010). Reorganization of global form and motion processing during human visual development. Current Biology, 20, 411–415.
Weiskopf, D. A. (2008). The origins of concepts. Philosophical Studies, 140, 359–384.
Wiesel, T., & Hubel, D. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology, 28, 1041–1059.
Will, B., Dalrymple-Alford, J., Wolff, M., & Cassel, J. C. (2008). Reflections on the use of the concept of plasticity in neurobiology: Translation and adaptation by Bruno Will, John Dalrymple-Alford, Mathieu Wolff and Jean-Christophe Cassel from J. Paillard, J Psychol 1976. Behavioural Brain Research, 192, 7–11.
Willshaw, D. J., & von der Malsburg, C. (1976). How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London, B194, 431–445.
Wilson, S. P., Law, J. S., Mitchinson, B., Prescott, T. J., & Bednar, J. A. (2010). Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS ONE, 5, e8778.
Wonnacott, E. (2013). Learning: Statistical mechanisms in language acquisition. In P. Binder & K. Smith (Eds.), The language phenomenon (pp. 65–92). Berlin: Springer.
Xu, H., Chen, M. F. Y. S. M. H., Zenisek, S. L. K. D., Zhou, Z. J., Tian, D. A. B. N., Picciotto, M. R., et al. (2011). An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron, 71, 1141–1152.
Zeki, S. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology, 236, 549–573.
Zeki, S. (2015). Area V5—A microcosm of the visual brain. Frontiers in Integrative Neuroscience, 9, 21.
Zhang, J., Ackman, J., Xu, H. P., & Crair, M. C. (2011). Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience, 71, 1141–1152.
Zhuo, M., & Hawkins, R. D. (1995). Long-term depression: A learning-related type of synaptic plasticity in the mammalian central nervous system. Reviews in the Neurosciences, 6, 259–277.
Zou, D., Feinstein, P., Rivers, A., Mathews, G., Kim, A., & Greer, C. (2004). Postnatal refinement of peripheral olfactory projections. Science, 304, 1976–1979.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Plebe, A., Mazzone, M. Neural plasticity and concepts ontogeny. Synthese 193, 3889–3929 (2016). https://doi.org/10.1007/s11229-016-1131-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11229-016-1131-z