Clark Glymour’s responses to the contributions to the Synthese special issue “Causation, probability, and truth: the philosophy of Clark Glymour” | Synthese
Skip to main content

Clark Glymour’s responses to the contributions to the Synthese special issue “Causation, probability, and truth: the philosophy of Clark Glymour”

  • S.I.: The Philosophy of Clark Glymour
  • Published:
Synthese Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Notes

  1. Inverse covariance or partial correlation methods produce an undirected graph that “marries” the direct causes of a common effect. Such edges have no causal interpretation. By contrast, the undirected skeleton of the partially directed graphs produced by correct causal search algorithms such as GES or PC does not include such edges, and does have a causal interpretation.

  2. A similar argument can be given without assuming overdetermination: if {c1,..., cn} is the minimal sufficient set for E, then if E had not occurred, it does not follow that a particular ci would not have occurred.

  3. Alas, much of philosophy of science in the last century debated unprofitably what whether such sentences have truth values and what they could mean.

References

  • Danks, D., & Plis, S. (2013). Learning causal structure from undersampled time series. In JMLR: Workshop and conference proceedings (Vol. 1, pp. 1–10).

  • Danks, D. (2014). Unifying the mind. Cambridge: MIT Press.

    Google Scholar 

  • Davidson, D. (1970). How is weakness of the will possible? In Joel Feinberg (Ed.), Moral concepts. Oxford: Oxford University Press.

    Google Scholar 

  • Dennett, D. C. (2005). Cognitive wheels: The frame problem of AI. Language and Thought, 3, 217.

    Google Scholar 

  • Eberhardt, F. (2015). Green and grue causal variables. Synthese. doi:10.1007/s11229-015-0832-z.

  • Eells, E. (1982). Rational decision and causality. Cambridge: Cambridge University Press.

    Google Scholar 

  • Field, H. (2003). Causation in a physical world. In M. J. Loux & D. W. Zimmerman (Eds.), Oxford handbook of metaphysics (pp. 435–460). Oxford: Oxford University Press.

    Google Scholar 

  • Gaifman, H., Osherson, D. N., & Weinstein, S. (1990). A reason for theoretical terms. Erkenntnis, 32(2), 149–159.

    Article  Google Scholar 

  • Gates, K. M., & Molenaar, P. C. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. Neuroimage, 63(1), 310–319.

    Article  Google Scholar 

  • Gigerenzer, G. (2010). Moral satisficing: Rethinking moral behavior as bounded rationality. Topics in Cognitive Science, 2(3), 528–554.

    Article  Google Scholar 

  • Glymour, C., & Eberhardt, F. (2012). Hans Reichenbach. In E. N. Zahlta (Ed.), Stanford encyclopedia of philosophy. Retrieved, from http://plato.stanford.edu/archives/win2012/entries/reichenbach/.

  • Glymour, C. (1980). Theory and evidence. Princeton: Princeton University Press.

    Google Scholar 

  • Glymour, C. (2012). On the possibility of inference to the best explanation. Journal of Philosophical Logic, 41, 461–469.

    Article  Google Scholar 

  • Glymour, C., Scheines, R., Spirtes, P., & Kelly, K. (1987). Discovering causal structure. Cambridge: Academic Press.

    Google Scholar 

  • Hagmayer, Y. (2015). Causal Bayes nets as psychological theories of causal reasoning—Evidence from psychological research. Synthese. doi:10.1007/s11229-015-0734-0.

  • Hagmayer, Y., & Sloman, S. A. (2009). Decision makers conceive of their choices as interventions. Journal of Experimental Psychology: General, 138(1), 22–38.

    Article  Google Scholar 

  • Hashem, A. l., & Cooper, G. F. (1996). Human causal discovery from observational data. In Proceedings of the AMIA annual symposium (pp. 27–31). Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233172/.

  • Hiddleston, E. (2005). A causal theory of counterfactuals. Noûs, 39(4), 632–657.

    Article  Google Scholar 

  • Hitchcock, C. R. (2015). Conditioning, intervening, and decision. Synthese. doi:10.1007/s11229-015-0710-8.

  • Hitchcock, C. (1996). Causal decision theory and decision-theoretic causation. Nous, 30(4), 508–526.

    Article  Google Scholar 

  • Hoffmann-Kolss, V. (2015). Of brains and planets: On a causal criterion for mind-brain identities. Synthese. doi:10.1007/s11229-015-0671-y.

  • Jeffrey, R. (1990). The logic of decision. Chicago: University of Chicago Press.

    Google Scholar 

  • Jeffrey, R. (2004). Subjective probability: The real thing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Joyce, J. M. (1999). The foundations of causal decision theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kelly, T. K., & Mayo-Wilson, C. (2010). Causal conclusions that flip repeatedly and their justification. In Proceedings of the 26th conference on uncertainty and artificial intelligence (pp. 277–286). Corvallis: AUAI Press.

  • Kelly, K., Genin, K., & Lin, H. (2015). Realism, rhetoric and reliability. Synthese. doi:10.1007/s11229-015-0993-9.

  • Lagnado, D. A., & Sloman, S. (2004). The advantage of timely intervention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 856–876.

  • Leamer, E. (1976). Specification searches. New York: Wiley.

    Google Scholar 

  • Lewis, D. (1973). Causation. Journal of Philosophy, 70, 556–567.

    Article  Google Scholar 

  • Lewis, D. (1981). Causal decision theory. Australasian Journal of Philosophy, 59(1), 5–30.

    Article  Google Scholar 

  • Näger, P. (2015). The causal problem of entanglement. Synthese. doi:10.1007/s11229-015-0668-6.

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Price, H. (1986). Against causal decision theory. Synthese, 67(2), 195–212.

    Article  Google Scholar 

  • Quesada-Molina, J., Rodriguez-Lallina, J., & Ubeda-Flores, M. (2003). What are copulas? Monographias del Seminario Mathematico Garcia Galdeano, 27, 499–506.

    Google Scholar 

  • Rosenhouse, J. (2009). The Monty Hall problem. Oxford: Oxford University Press.

    Google Scholar 

  • Scanlon, T. (2000). What we owe to each other. Cambridge, MA: Belknap Press of Harvard University Press.

    Google Scholar 

  • Scanlon, T. M. (2014). Being realistic about reasons. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Schurz, G., & Gebharter, A. (2014). Causality as a theoretical concept: Explanatory warrant and empirical content of the theory of causal nets. Synthese. doi:10.1007/s11229-014-0630-z.

  • Skyrms, B. (1990). The dynamics of rational deliberation. Cambridge: Harvard University Press.

    Google Scholar 

  • Sobel, D. M., & Kushnir, T. (2003). Interventions do not solely benefit causal learning: Being told what to do results in worse learning than doing it yourself. In Proceedings of the 25th annual meeting of the Cognitive Science Society.

  • Sparks, D. L. (1986). Translation of sensory signals into commands for control of saccadic eye movements: Role of primate superior colliculus. Physiological Reviews, 66, 118–171.

    Google Scholar 

  • Spirtes, P., Glymour, C., Scheines, R., Meek, C., Fienberg, S., & Slate, E. (1992). Prediction and experimental design with graphical causal models. Repository.CMU.Edu.

  • Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search (1st ed.). Berlin: Springer.

    Book  Google Scholar 

  • Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search (2nd ed.). Cambridge: MIT Press.

    Google Scholar 

  • Steyvers, M., Tenenbaum, J. B., Wagenmakers, E.-J., & Blum, B. (2003). Inferring causal networks from observations and interventions. Cognitive Science, 27, 453–489.

    Article  Google Scholar 

  • Wenmackers, S., & Romeijn, J.-W. (2014). New theory about old evidence: A framework for open-minded Bayesianism. Synthese. doi:10.1007/s11229-014-0632-x.

  • Woodward, J. (2015). The problem of variable choice. Synthese. doi:10.1007/s11229-015-0810-5.

  • Zhang, J., & Spirtes, P. (2015). The three faces of faithfulness. Synthese. doi:10.1007/s11229-015-0673-9.

  • Zhang, J. (2012). A comparison of three Occam’s razors for Markovian causal models. British Journal for the Philosophy of Science, 64(2), 423–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark Glymour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glymour, C. Clark Glymour’s responses to the contributions to the Synthese special issue “Causation, probability, and truth: the philosophy of Clark Glymour”. Synthese 193, 1251–1285 (2016). https://doi.org/10.1007/s11229-016-1021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-016-1021-4

Keywords