Neat embeddings as adjoint situations | Synthese
Skip to main content

Neat embeddings as adjoint situations

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Looking at the operation of forming neat \(\alpha \)-reducts as a functor, with \(\alpha \) an infinite ordinal, we investigate when such a functor obtained by truncating \(\omega \) dimensions, has a right adjoint. We show that the neat reduct functor for representable cylindric algebras does not have a right adjoint, while that of polyadic algebras is an equivalence. We relate this categorial result to several amalgamation properties for classes of representable algebras. We show that the variety of cylindric algebras of infinite dimension, endowed with the merry go round identities, fails to have the amalgamation property answering a question of Németi’s. We also study two variants of the so-called cylindric polyadic algebras introduced by Ferenczi (all are reducts of polyadic equality algebras, that are also varieties). We show that one is more cylindric than polyadic, and that the other is more polyadic than cylindric. Our classification is determined by results on neat embeddings and amalgamation expressed from the point of view of category theory, thereby witnessing, and, indeed, further emphasizing, the dichotomy between the cylindric and polyadic paradigms. For example, the first class does not have the unique neat embedding property, fails to have the amalgamation property and the neat reduct functor does not have a right adjoint, while the second class has the unique neat emdedding property, the superamalgamation property and the neat reduct functor is strongly invertible. Other results, like first order definability of the class of neat reducts and the class of completely representable algebras, confirming our classification along these lines are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andréka, H., Ferenczi, M., & Németi, I. (Eds.). (2012). Cylindric-like algebras and algebraic logic. Berlin: Bolyai Society Mathematical Studies and Springer-Verlag.

    Google Scholar 

  • Andréka, H., Németi, I., & Sayed-Ahmed, T. (2013). A non-representable quasi-polyadic equality algebra with a representable cylindric reduct. Studia Mathematica Hungarica, 50, 1–16.

    Article  Google Scholar 

  • Daigneault, A. (1963). Freedom in polyadic algebras and two theorems of Beth and Craig. Michigan Mathematical Journal, 11, 129–135.

    Google Scholar 

  • Daigneault, A., & Monk, J. D. (1963). Representation theory for polyadic algebras. Fundamenta Mathematicae, 52, 151–176.

    Article  Google Scholar 

  • Ferenczi, M. (2007a). Finitary polyadic algebras from cylindric algebras. Studia Logica, 87(1), 1–11.

    Article  Google Scholar 

  • Ferenczi, M. (2007b). On cylindric algebras satisfying the merry-go-round properties. Logic Journal of IGPL, 15(2), 183–199.

    Article  Google Scholar 

  • Ferenczi, M. (2012a). The polyadic generalization of the Boolean axiomatization of fields of sets. Transactions of the American Mathematical Society, 364(2), 867–886.

    Article  Google Scholar 

  • Ferenczi, M. (2012b). A new representation theory for cylindric-like algebras. In Cylindric-like algebras and algebraic logic. Berlin: Bolyai Mathematical Society and Springer-Verlag.

  • Halmos, P. (1962). Algebraic logic. New York: Chelsea Publishing Co.

    Google Scholar 

  • Henkin, L., Monk, J. D., & Tarski, A. (1971). Cylindric algebras. Part I. Amsterdam: North Holland.

    Google Scholar 

  • Henkin, L., Monk, J. D., & Tarski, A. (1985). Cylindric algebras. Part II. Amsterdam: North Holland.

    Google Scholar 

  • Herrlich, H., & Strecker, G. E. (1973). Category theoryAn introduction (p. 55). Boston, MA: Allyn and Bacon.

  • Hirsch, R., & Hodkinson, I. (1997). Complete representations in algebraic logic. Journal of Symbolic Logic, 62, 816–847.

    Article  Google Scholar 

  • Hirsch, R., & Sayed-Ahmed, T. (2013). The neat embedding problem for other algebras and for infinite dimension. Journal of Symbolic Logic (accepted).

  • Johnson, J. S. (1970). Amalgamation of polyadic algebras. Transactions of the American Mathematical Society, 149, 627–652.

    Article  Google Scholar 

  • Keisler, H. J. (1963). A complete first order logic with infinitary predicates. Fundamenta Mathematicae, 52, 177–203.

    Article  Google Scholar 

  • Madárasz, J., & Sayed-Ahmed, T. (2007). Amalgamation, interpolation and epimorphisms. Algebra Universalis, 56(2), 179–210.

    Article  Google Scholar 

  • Madarász, J., & Sayed-Ahmed, T. (2012). Amalgamation, interpolation and epimorphisms in algebraic logic. In Cylindric-like algebras and algebraic logic (pp. 91–103). Berlin: Bolyai Mathematical Society and Springer-Verlag.

    Google Scholar 

  • Marx, I. (1995). Algebraic relativization and arrow logic. Ph.D. Thesis, ILLC Dissertation Series.

  • Németi, I., & Sági, G. (2000). On the equational theory of representable polyadic algebras. Journal of Symbolic Logic, 65(3), 1143–1167.

    Article  Google Scholar 

  • Pigozzi, D. (1971). Amalgmation, congruence extension, and interpolation properties in algebras. Algebra Universalis, 1, 269–349.

    Article  Google Scholar 

  • Sain, I. (2000). Searching for a finitizable algebraization of first order logic. Logic Journal of IGPL, 4, 495–589.

    Google Scholar 

  • Sági, G. (2011). On non representable \(G\)-polyadic algebras with representable cylindric reduct. Logic Journal of IGPL, 19(1), 105–109.

    Article  Google Scholar 

  • Sági, G. (2012). Polyadic algebras. In Cylindric-like algebras and algebraic logic pp. (367–392). Berlin: Bolyai Mathematical Society and Springer-Verlag.

    Google Scholar 

  • Sági, G., & Ferenczi, M. (2006). On some developments in the representation theory of cylindric-like algebras. Algebra Universalis, 55(2–3), 345–353.

    Google Scholar 

  • Sági, G., & Shelah, S. (2006). Weak and Strong interpolation for algebraic logic. Journal of Symbolic Logic, 71, 104–118.

    Article  Google Scholar 

  • Sayed-Ahmed, T. (2001). The class of neat reducts is not elementary. Logic Journal of IGPL, 9, 593–628.

    Article  Google Scholar 

  • Sayed-Ahmed, T. (2004). On amalgamation of reducts of polyadic algebras. Algebra Universalis, 51, 301–359.

    Google Scholar 

  • Sayed-Ahmed, T. (2005). Algebraic logic, where does it stand today? Bulletin of Symbolic Logic, 11(4), 465–516.

    Article  Google Scholar 

  • Sayed-Ahmed, T. (2006). The class of infinite dimensional quasi-polyadic algebras is not axiomatizable. Mathematical Logic Quarterly, 52, 106–112.

    Article  Google Scholar 

  • Sayed-Ahmed, T. (2007). An interpolation theorem for first order logic with infinitary predicates. Logic Journal of IGPL, 15(1), 21–32.

    Article  Google Scholar 

  • Sayed-Ahmed, T. (2009). On neat embeddings of cylindric algebras. Mathematical Logic Quarterly, 55(6), 666–668.

    Article  Google Scholar 

  • Sayed-Ahmed, T. (2010a). The class of polyadic algebras has the superamalgmation property. Mathematical Logic Quarterly, 56(1), 83–112.

    Google Scholar 

  • Sayed-Ahmed, T. (2010). Some results about neat reducts. Algebra Universalis, 1(2010), 17–36.

    Article  Google Scholar 

  • Sayed-Ahmed, T. (2011). Algebras without the amalgamation property. Logic Journal of IGPL, 19(1), 87–104.

    Article  Google Scholar 

  • Sayed-Ahmed, T. (2012a). Neat reducts and neat embeddings in cylindric algebras. In Cylindric-like algebras and algebraic logic. Berlin: Bolayi Mathematical Society and Springer-Verlag.

  • Sayed-Ahmed, T. (2012b). Amalgamation in universal algebraic logic. Studia Mathematica Hungarica, 49(1), 26–43.

    Article  Google Scholar 

  • Sayed-Ahmed, T. (2013). The class of quasi-polyadic equality algebras is not finitely axiomatizable over its diagonal free reducts. Notre Dame Journal of Formal Logic (revised and re-submitted).

  • Sayed-Ahmed, T., & Németi, I. (2001). On neat reducts of algebras of logic. Studia Logica, 62(2), 229–262.

    Article  Google Scholar 

Download references

Acknowledgments

This paper was presented in the conference ‘Logic and Relativity’ held in Budapest in September 2012 in honour of Istvan Németi turning 70. I dedicate it to my mentor Professor Istvan Németi, and my present is an answer to a question of his. The variety of cylindric algebras of infinite dimensions endowed with the merry go round identities fails to have the amalgamation property. I came to know about this question back in Budapest in 2006, when together with Professor Hajnal Andréka we were discussing the open questions in Pigozzi (1971). Professor Németi had a copy of Pigozzi’s paper, that was obviously excessively used and re-used with question marks scattered all over. Miraculously I was able to obtain a photocopy, which I still have, with Istvan Németi’s questions in his own writing still there, but barely. One of my results here settles one of these scribbled question marks. Many more of Németi’s scribbled question marks were settled in my dissertation under his supervision, and some other question marks were jointly settled with Judit Madarász, witness Madárasz and Sayed-Ahmed (2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Sayed-Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayed-Ahmed, T. Neat embeddings as adjoint situations. Synthese 192, 2223–2259 (2015). https://doi.org/10.1007/s11229-013-0344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-013-0344-7

Keywords