OHUQI: Mining on-shelf high-utility quantitative itemsets | The Journal of Supercomputing Skip to main content
Log in

OHUQI: Mining on-shelf high-utility quantitative itemsets

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Mobile edge computing has brought fresh opportunities and challenges to data science. Utility-driven mining, a recently emerging branch of utility-based data science, has been widely applied because it considers both the utility factor and the quantity characteristic with ranges of patterns. However, most existing utility-mining algorithms assume that patterns always appear regardless of the period. For instance, some products may sell well at certain times of the year. Considering the rich information in the database, such as quantity and time, we propose an effective and efficient approach, namely OHUQI, for discovering on-shelf high-utility quantitative itemsets. To avoid scanning the database multiple times, we adopt a data structure to maintain some necessary information, and thus OHUQI only accesses the database twice. Several pruning strategies are also designed to prune a large number of unpromising itemsets in advance to shrink the search space. Finally, the subsequent experimental results show that OHUQI performs well on several real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aggarwal CC (2015) Data mining: the textbook. Springer, Berlin

    MATH  Google Scholar 

  2. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp 207–216

  3. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the International Conference Very Large Data Bases, vol 1215, pp 487–499

  4. Agrawal R, Srikant R (2000) Privacy-preserving data mining. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp 439–450

  5. Chan R, Yang Q, Shen YD (2003) Mining high utility itemsets. In: IEEE International Conference on Data Mining. IEEE Computer Society, p 19

  6. Chang CY, Chen MS, Lee CH (2002) Mining general temporal association rules for items with different exhibition periods. In: Proceedings of IEEE International Conference on Data Mining. IEEE, pp 59–66

  7. Chen CM, Chen L, Gan W, Qiu L, Ding W (2021) Discovering high utility-occupancy patterns from uncertain data. Inf Sci 546:1208–1229

    Article  MathSciNet  Google Scholar 

  8. Chen J, Guo X, Gan W, Chen CM, Ding W, Chen G (2020) OSUMI: on-shelf utility mining from itemset-based data. In: IEEE International Conference on Big Data. IEEE , pp 5340–5349

  9. Chen M, Han J, Yu PS (1996) Data mining: an overview from a database perspective. IEEE Trans Knowl Data Eng 8(6):866–883

    Article  Google Scholar 

  10. Chen X, Li M, Zhong H, Ma Y, Hsu CH (2021) DNNOff: offloading DNN-based intelligent IoT applications in mobile edge computing. IEEE Trans Ind Inform. https://doi.org/10.1109/TII.2021.3075464

    Article  Google Scholar 

  11. Dam TL, Li K, Fournier-Viger P, Duong QH (2017) An efficient algorithm for mining top-\(k\) on-shelf high utility itemsets. Knowl Inf Syst 52(3):621–655

    Article  Google Scholar 

  12. Fournier-Viger P, Lin JCW, Duong QH, Dam TL (2016) PHM: mining periodic high-utility itemsets. In: Industrial Conference on Data Mining. Springer, pp 64–79

  13. Fournier-Viger P, Wu CW, Zida S, Tseng VS (2014) FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: International Symposium on Methodologies for Intelligent Systems. Springer, pp 83–92

  14. Fournier-Viger P, Zida S (2015) FOSHU: faster on-shelf high utility itemset mining–with or without negative unit profit. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp 857–864

  15. Gan W, Lin CW, Fournier-Viger P, Chao HC, Tseng V, Yu PS (2021) A survey of utility-oriented pattern mining. IEEE Trans Knowl Data Eng 33(4):1306–1327

    Article  Google Scholar 

  16. Gan W, Lin JCW, Chao HC, Vasilakos AV, Yu PS (2020) Utility-driven data analytics on uncertain data. IEEE Syst J 14(3):4442–4453

    Article  Google Scholar 

  17. Gan W, Lin JCW, Chao HC, Wang SL, Yu PS (2018) Privacy preserving utility mining: a survey. In: Proceedings of the IEEE International Conference on Big Data. IEEE, pp 2617–2626

  18. Gan W, Lin JCW, Chao HC, Zhan J (2017) Data mining in distributed environment: a survey. Wiley Interdiscip Rev Data Min Knowl Discov 7(6):e1216

    Google Scholar 

  19. Gan W, Lin JCW, Fournier-Viger P, Chao HC, Hong TP, Fujita H (2018) A survey of incremental high-utility itemset mining. Wiley Interdiscip Rev Data Min Knowl Discov 8(2):e1242

    Article  Google Scholar 

  20. Gan W, Lin JCW, Fournier-Viger P, Chao HC, Yu PS (2020) HUOPM: high-utility occupancy pattern mining. IEEE Trans Cybern 50(3):1195–1208

    Article  Google Scholar 

  21. Gan W, Lin JCW, Fournier-Viger P, Chao HC, Yu PS (2021) Beyond frequency: utility mining with varied item-specific minimum utility. ACM Trans Intern Technol 21(1):1–32

    Article  Google Scholar 

  22. Gan W, Wan S, Chen J, Chen CM, Qiu L (2020) TopHUI: top-\(k\) high-utility itemset mining with negative utility. In: IEEE International Conference on Big Data. IEEE, pp 5350–5359

  23. Gupta D, Rani S, Ahmed SH, Verma S, Ijaz MF, Shafi J (2021) Edge caching based on collaborative filtering for heterogeneous ICN-IoT applications. Sensors 21(16):5491

    Article  Google Scholar 

  24. Hackman A, Huang Y, Tseng VS (2018) Mining trending high utility itemsets from temporal transaction databases. In: International Conference on Database and Expert Systems Applications. Springer, pp 461–470

  25. Hackman A, Huang Y, Yu PS, Tseng VS (2019) Mining emerging high utility itemsets over streaming database. In: International Conference on Advanced Data Mining and Applications. Springer, pp 3–16

  26. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. ACM SIGMOD Rec 29(2):1–12

    Article  Google Scholar 

  27. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—a key technology towards 5g. ETSI White Paper 11(11):1–16

    Google Scholar 

  28. Lan GC, Hong TP, Huang JP, Tseng VS (2014) On-shelf utility mining with negative item values. Expert Syst Appl 41:3450–3459

    Article  Google Scholar 

  29. Lan GC, Hong TP, Tseng VS (2011) Discovery of high utility itemsets from on-shelf time periods of products. Expert Syst Appl 38:5851–5857

    Article  Google Scholar 

  30. Laxman S, Sastry PS (2006) A survey of temporal data mining. SADHANA Acad Proc Eng Sci 31(2):173–198

    MathSciNet  MATH  Google Scholar 

  31. Li CH, Wu CW, Huang J, Tseng VS (2019) An efficient algorithm for mining high utility quantitative itemsets. In: Proceedings of International Conference on Data Mining Workshops. IEEE, pp 1005–1012

  32. Li CH, Wu CW, Tseng VS (2014) Efficient vertical mining of high utility quantitative itemsets. In: Proceedings of International Conference on Granular Computing. IEEE, pp 155–160

  33. Li H, Shou G, Hu Y, Guo Z (2016) Mobile edge computing: progress and challenges. In: Proceedings of the 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering. IEEE, pp 83–84

  34. Lin B, Huang Y, Zhang J, Hu J, Chen X, Li J (2019) Cost-driven off-loading for DNN-based applications over cloud, edge, and end devices. IEEE Trans Ind Inform 16(8):5456–5466

    Article  Google Scholar 

  35. Lin JCW, Fournier-Viger P, Gan W (2016) FHN: an efficient algorithm for mining high-utility itemsets with negative unit profits. Knowl-Based Syst 111:283–298

    Article  Google Scholar 

  36. Lin JCW, Gan W, Fournier-Viger P, Hong TP, Tseng VS (2016) Efficient algorithms for mining high-utility itemsets in uncertain databases. Knowl-Based Syst 96:171–187

    Article  Google Scholar 

  37. Lin JCW, Gan W, Hong TP, Pan JS (2014) Incrementally updating high-utility itemsets with transaction insertion. In: International Conference on Advanced Data Mining and Applications. Springer, pp 44–56

  38. Liu M, Qu J (2012) Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM International Conference on Information and knowledge Management, pp 55–64

  39. Liu Y, Liao WK, Choudhary A (2005) A two-phase algorithm for fast discovery of high utility itemsets. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp 689–695

  40. Mitsa T (2010) Temporal data mining. CRC Press, Boca Raton

    Book  Google Scholar 

  41. Nouioua M, Fournier-Viger P, Wu CW, Lin JCW, Gan W (2021) FHUQI-Miner: fast high utility quantitative itemset mining. Appl Intell 51(10):6785–6809

    Article  Google Scholar 

  42. Rani S, Koundal D, Ijaz MF, Elhoseny M, Alghamdi MI et al (2021) An optimized framework for wsn routing in the context of industry 4.0. Sensors 21(19):6474

    Article  Google Scholar 

  43. Reddy TY, Kiran RU, Toyoda M, Reddy PK, Kitsuregawa M (2019) Discovering partial periodic high utility itemsets in temporal databases. In: Proceedings of International Conference on Database and Expert Systems Applications. Springer, pp 351–361

  44. Tseng VS, Shie BE, Wu CW, Yu PS (2012) Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans Knowl Data Eng 25:1772–1786

    Article  Google Scholar 

  45. Tseng VS, Wu CW, Shie BE, Yu PS (2010) UP-Growth: an efficient algorithm for high utility itemset mining. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 253–262

  46. Wang CM, Chen SH, Huang YF (2009) A fuzzy approach for mining high utility quantitative itemsets. In: Proceedings of International Conference on Fuzzy Systems. IEEE, pp 1909–1913

  47. Yao H, Hamilton HJ (2006) Mining itemset utilities from transaction databases. Data Knowl Eng 59:603–626

    Article  Google Scholar 

  48. Yen SJ, Lee YS (2007) Mining high utility quantitative association rules. In: International Conference on Data Warehousing and Knowledge Discovery. Springer, pp 283–292

  49. Zhang C, Du Z, Yang Y, Gan W, Yu PS (2021) On-shelf utility mining of sequence data. ACM Trans Knowl Discov Data 16(2):1–31

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Open Foundation of Pazhou Laboratory (Guangdong Artificial Intelligence and Digital Economy Laboratory), and Open Foundation of Guangdong Provincial Key Laboratory of Public Finance and Taxation with Big Data Application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Ming Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Gan, W., Lin, Q. et al. OHUQI: Mining on-shelf high-utility quantitative itemsets. J Supercomput 78, 8321–8345 (2022). https://doi.org/10.1007/s11227-021-04218-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04218-0

Keywords

Navigation