Proof Theory of Paraconsistent Weak Kleene Logic | Studia Logica
Skip to main content

Proof Theory of Paraconsistent Weak Kleene Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Paraconsistent Weak Kleene Logic (PWK) is the 3-valued propositional logic defined on the weak Kleene tables and with two designated values. Most of the existing proof systems for PWK are characterised by the presence of linguistic restrictions on some of their rules. This feature can be seen as a shortcoming. We provide a cut-free calculus (a hybrid between a natural deduction calculus and a sequent calculus) for PWK that is devoid of such provisos. Moreover, we introduce a Priest-style tableaux calculus for PWK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, A., Simple consequence relations, Information and Computation 92:105–139, 1991.

    Article  Google Scholar 

  2. Barrio, E., L. Rosenblatt, and D. Tajer, The logics of strict-tolerant logic, Journal of Philosophical Logic 44(5):551–571, 2015.

    Article  Google Scholar 

  3. Beall, J. C., A new interpretation of weak Kleene logic, Australasian Journal of Logic 13:136–142, 2016.

    Article  Google Scholar 

  4. Bloesch, A., A tableau style proof system for two paraconsistent logics, Notre Dame Journal of Formal Logic 34:295–301, 1993.

    Article  Google Scholar 

  5. Blok, W. J., and B. Jónsson, Equivalence of consequence operations, Studia Logica 83:91–110, 2006.

    Article  Google Scholar 

  6. Bochvar, D. A., On a three-valued calculus and its application in the analysis of the paradoxes of the extended functional calculus, Mathematicheskii Sbornik 4:287–308, 1938.

    Google Scholar 

  7. Bonzio, S., J. Gil-Férez, F. Paoli, and L. Peruzzi, On Paraconsistent Weak Kleene Logic: Axiomatization and algebraic analysis, Studia Logica 105(2):253–297, 2017.

    Article  Google Scholar 

  8. Bonzio, S., T. Moraschini, and M. Pra Baldi, Logics of left variable inclusion and Płonka sums of matrices, submitted manuscript.

  9. Bonzio, S., M. Pra Baldi, Containment logics and Płonka sums of matrices, submitted manuscript.

  10. Brady, R., and R. Routley, Don’t care was made to care, Australasian Journal of Philosophy 51:211–225, 1973.

    Article  Google Scholar 

  11. Ciuni, R., and M. Carrara, Characterizing logical consequence in Paraconsistent Weak Kleene, in L. Felline, A. Ledda, F. Paoli, and E. Rossanese, (eds.), New Developments in Logic and the Philosophy of Science, College, London, 2016, pp. 165–176.

    Google Scholar 

  12. Ciuni, R., and M. Carrara, Semantical analysis of weak Kleene logics, Journal of Applied Nonclassical Logics 29(1):1–36, 2019.

    Article  Google Scholar 

  13. Ciuni R., T. M. Ferguson, and D. Szmuc, Relevant logics obeying component homogeneity. Australasian Journal of Logic 15(2):301–361, 2018.

  14. Ciuni, R., and T. M. Ferguson, Logics based on linear orders of contaminating values, Journal of Logic and Computation 29(5):631–663, 2019.

    Article  Google Scholar 

  15. Ciuni, R., T. M. Ferguson, and D. Szmuc, Modelling the interaction of computer errors by four-valued contaminating logics, Proceedings of WoLLIC 2019, to appear.

  16. Cobreros P., P. Egré, D. Ripley, and R. van Rooij, Reaching transparent truth, Mind 122(488):841–866, 2013.

    Article  Google Scholar 

  17. Coniglio, M. E., and M. I. Corbalán, Sequent calculi for the classical fragment of Bochvar and Halldén’s nonsense logics, Proceedings of LSFA 2012, pp. 125–136.

  18. Correia, F., Weak necessity on weak Kleene matrices, in F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyashev, (eds.), Advances in Modal Logic, World Scientific, River Edge, NJ, 2002, pp. 73–90.

    Chapter  Google Scholar 

  19. D’Agostino, M., Investigations into the Complexity of Some Propositional Calculi, Oxford University Computing Laboratory Technical Monographs, Report PRG-88, 1990.

  20. Dicher, B., and F. Paoli, ST, LP, and tolerant metainferences, in T. M. Ferguson, and H. Omori, (eds.), Graham Priest on Dialetheism and Paraconsistency, Springer, Berlin, forthcoming.

  21. Ferguson, T. M., Meaning and Proscription in Formal Logic, Springer, Berlin, 2017.

    Book  Google Scholar 

  22. Ferguson, T. M., Secrecy, content, and quantification, Analisis Filosofico, forthcoming.

  23. Font, J. M., Abstract Algebraic Logic: An Introductory Textbook, College Publications, London, 2016.

    Google Scholar 

  24. Girard, J.-Y., Proof Theory and Logical Complexity, Bibliopolis, Napoli, 1987.

    Google Scholar 

  25. Hallden, S., The Logic of Nonsense, Lundequista Bokhandeln, Uppsala, 1949.

    Google Scholar 

  26. Kleene, S. C., Introduction to Metamathematics, North Holland, Amsterdam, 1952.

    Google Scholar 

  27. Metcalfe G., N. Olivetti, and D. Gabbay, Proof Theory for Fuzzy Logics, Springer, Berlin, 2009.

    Book  Google Scholar 

  28. Omori, H., and D. Szmuc, Conjunction and Disjunction in Infectious Logics, in Proceedings of LORI 2017, Springer, 2017, pp. 268–283.

  29. Paoli, F., Tautological entailments and their rivals, in J. Y. Beziau, et al. (eds.), Handbook of Paraconsistency, College Publications, London, 2007, pp. 153–175.

    Google Scholar 

  30. Pra Baldi, M., Logics of variable inclusion and the lattice of consequence relations, typescript.

  31. Priest, G., Paraconsistent logic, in D. Gabbay, and F. Guenthner, (eds.), Handbook of Philosophical Logic, new edition, Kluwer, Dordrecht, vol. 6, 2002, pp. 287–393.

  32. Priest, G., In Contradiction, 2nd expanded ed., Clarendon, Oxford, 2006.

    Book  Google Scholar 

  33. Priest, G., An Introduction to Nonclassical Logics: From If to Is, Cambridge University Press, Cambridge, 2008.

    Book  Google Scholar 

  34. Priest, G., Natural deduction systems for logics in the FDE family, in H. Omori and H. Wansing, (eds.), New Essays in Belnap-Dunn Logic, Springer, Berlin, forthcoming.

  35. Prior, A., Time and Modality, Oxford University Press, Oxford, 1957.

    Google Scholar 

  36. Pynko, A., Gentzen’s cut-free calculus versus the logic of paradox, Bulletin of the Section of Logic 39:35–42, 2010.

    Google Scholar 

  37. Ripley, D., Paradoxes and failures of cut, Australasian Journal of Philosophy 91(1):139–164, 2013.

    Article  Google Scholar 

  38. Sylvan, R., On reasoning: (Ponible) reason for (and also against) relevance, in D. Hyde and G. Priest, (eds.), Sociative Logics and Their Applications, Aldershot, Ashgate, 2000, pp. 175–188.

    Google Scholar 

  39. Szmuc, D., An epistemic interpretation of Paraconsistent Weak Kleene Logic, Logic and Logical Philosophy 28(2):277–330, 2019.

    Google Scholar 

  40. Szmuc, D., and T. M. Ferguson, Meaningless divisions, typescript.

  41. Urquhart, A., Basic many-valued logic, in D. Gabbay, and F. Guenthner, (eds.), Handbook of Philosophical Logic, new edition, Kluwer, Dordrecht, vol. 2, 2002, pp. 249–296.

Download references

Acknowledgements

A preliminary version of this paper was presented at the First Bilateral Workshop UNICA-UNAM (Cagliari, February 2019). Thanks are due to the audience of this talk for their insightful suggestions. We warmly thank Thomas Ferguson, Graham Priest and Damian Szmuc for the very useful feedback, and two anonymous reviewers for their detailed and extremely pertinent comments. F. Paoli gratefully acknowledges the support of the Horizon 2020 program of the European Commission: SYSMICS project, number: 689176, MSCA-RISE-2015 and of MIUR: Project “Theory and applications of resource sensitive logics”, PRIN 2017, Prot. 20173WKCM5. Both authors express their gratitude for the support of Fondazione di Sardegna within the project “Science and its Logics: The Representation’s Dilemma”, Cagliari, CUP: F72 F16 003 220 002, and the Regione Autonoma della Sardegna within the project: “Le proprietà d’ordine in matematica e fisica”, CUP: F72 F16 002 920 002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paoli, F., Pra Baldi, M. Proof Theory of Paraconsistent Weak Kleene Logic. Stud Logica 108, 779–802 (2020). https://doi.org/10.1007/s11225-019-09876-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-019-09876-z

Keywords

Mathematics Subject Classification