Abstract
The variety \({\mathcal{SH}}\) of semi-Heyting algebras was introduced by H. P. Sankappanavar (in: Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress, Universidad Nacional del Sur, Bahía Blanca, 2008) [13] as an abstraction of the variety of Heyting algebras. Semi-Heyting algebras are the algebraic models for a logic HsH, known as semi-intuitionistic logic, which is equivalent to the one defined by a Hilbert style calculus in Cornejo (Studia Logica 98(1–2):9–25, 2011) [6]. In this article we introduce a Gentzen style sequent calculus GsH for the semi-intuitionistic logic whose associated logic GsH is the same as HsH. The advantage of this presentation of the logic is that we can prove a cut-elimination theorem for GsH that allows us to prove the decidability of the logic. As a direct consequence, we also obtain the decidability of the equational theory of semi-Heyting algebras.
Similar content being viewed by others
References
Abad M., Cornejo J. M., Díaz Varela J. P.: The variety generated by semi-Heyting chains. Soft Computing 15(4), 721–728 (2010)
Abad M., Cornejo J. M., Díaz Varela J. P.: The variety of semi-Heyting algebras satisfying the equation \({(0 \to 1)\sp * \vee (0\to 1)\sp {**} \approx 1}\), Reports on Mathematical Logic 46, 75–90 (2011)
Abad M., Cornejo J. M., Díaz Varela J. P.: Free-decomposability in varieties of semi-Heyting algebras. Mathematical Logic Quarterly 58(3), 168–176 (2012)
Abad M., Cornejo J. M., Díaz Varela J. P.: Semi-Heyting algebras term-equivalent to Gödel algebras. Order 30(2), 625–642 (2013)
Blok, W. J., and D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society 77(396):vi+78 pp., 1989.
Cornejo J. M.: Semi-intuitionistic logic. Studia Logica 98(1–2), 9–25 (2011)
Cornejo J. M., Viglizzo I. D.: On some semi-intuitionistic logics. Studia Logica 103(2), 303–344 (2015)
Cornejo J. M.: The semi Heyting-Brouwer logic. Studia Logica 103(4), 853–875 (2015)
Font J. M., Jansana R., Pigozzi D.: A survey of abstract algebraic logic, Abstract algebraic logic, Part II (Barcelona, 1997). Studia Logica 74(1–2), 13–97 (2003)
Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics 151, Elsevier B.V., Amsterdam, xxii+509 pp., 2007.
Gentzen G.: Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39(1), 176–210 (1935)
Pelletier F. J., Urquhart A.: Synonymous logics. Journal of Philosophical Logic 32(3), 259–285 (2003)
Sankappanavar, H. P., Semi-Heyting algebras: an abstraction from Heyting algebras, Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress, Universidad Nacional del Sur, Bahía Blanca, 2008, pp. 33–66.
Sankappanavar H. P.: Expansions of semi-Heyting algebras I: discriminator varieties. Studia Logica 98(1–2), 27–81 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Castaño, D., Cornejo, J.M. Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic. Stud Logica 104, 1245–1265 (2016). https://doi.org/10.1007/s11225-016-9675-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-016-9675-y