Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic | Studia Logica Skip to main content
Log in

Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The variety \({\mathcal{SH}}\) of semi-Heyting algebras was introduced by H. P. Sankappanavar (in: Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress, Universidad Nacional del Sur, Bahía Blanca, 2008) [13] as an abstraction of the variety of Heyting algebras. Semi-Heyting algebras are the algebraic models for a logic HsH, known as semi-intuitionistic logic, which is equivalent to the one defined by a Hilbert style calculus in Cornejo (Studia Logica 98(1–2):9–25, 2011) [6]. In this article we introduce a Gentzen style sequent calculus GsH for the semi-intuitionistic logic whose associated logic GsH is the same as HsH. The advantage of this presentation of the logic is that we can prove a cut-elimination theorem for GsH that allows us to prove the decidability of the logic. As a direct consequence, we also obtain the decidability of the equational theory of semi-Heyting algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad M., Cornejo J. M., Díaz Varela J. P.: The variety generated by semi-Heyting chains. Soft Computing 15(4), 721–728 (2010)

    Article  Google Scholar 

  2. Abad M., Cornejo J. M., Díaz Varela J. P.: The variety of semi-Heyting algebras satisfying the equation \({(0 \to 1)\sp * \vee (0\to 1)\sp {**} \approx 1}\), Reports on Mathematical Logic 46, 75–90 (2011)

    Google Scholar 

  3. Abad M., Cornejo J. M., Díaz Varela J. P.: Free-decomposability in varieties of semi-Heyting algebras. Mathematical Logic Quarterly 58(3), 168–176 (2012)

    Article  Google Scholar 

  4. Abad M., Cornejo J. M., Díaz Varela J. P.: Semi-Heyting algebras term-equivalent to Gödel algebras. Order 30(2), 625–642 (2013)

    Article  Google Scholar 

  5. Blok, W. J., and D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society 77(396):vi+78 pp., 1989.

  6. Cornejo J. M.: Semi-intuitionistic logic. Studia Logica 98(1–2), 9–25 (2011)

    Article  Google Scholar 

  7. Cornejo J. M., Viglizzo I. D.: On some semi-intuitionistic logics. Studia Logica 103(2), 303–344 (2015)

    Article  Google Scholar 

  8. Cornejo J. M.: The semi Heyting-Brouwer logic. Studia Logica 103(4), 853–875 (2015)

    Article  Google Scholar 

  9. Font J. M., Jansana R., Pigozzi D.: A survey of abstract algebraic logic, Abstract algebraic logic, Part II (Barcelona, 1997). Studia Logica 74(1–2), 13–97 (2003)

    Article  Google Scholar 

  10. Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics 151, Elsevier B.V., Amsterdam, xxii+509 pp., 2007.

  11. Gentzen G.: Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39(1), 176–210 (1935)

    Article  Google Scholar 

  12. Pelletier F. J., Urquhart A.: Synonymous logics. Journal of Philosophical Logic 32(3), 259–285 (2003)

    Article  Google Scholar 

  13. Sankappanavar, H. P., Semi-Heyting algebras: an abstraction from Heyting algebras, Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress, Universidad Nacional del Sur, Bahía Blanca, 2008, pp. 33–66.

  14. Sankappanavar H. P.: Expansions of semi-Heyting algebras I: discriminator varieties. Studia Logica 98(1–2), 27–81 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Cornejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castaño, D., Cornejo, J.M. Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic. Stud Logica 104, 1245–1265 (2016). https://doi.org/10.1007/s11225-016-9675-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-016-9675-y

Keywords

Navigation