Abstract
We present sound and complete semantics and a sequent calculus for the Lambek calculus extended with intuitionistic propositional logic.
Similar content being viewed by others
References
Buszkowski W.: Some decision problems in the theory of syntactic categories. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 28, 539–548 (1982)
Buszkowski W.: Interpolation and FEP for logics of residuated algebras. Logic Journal of the IGPL 19, 437–454 (2011)
Buszkowski, W., and M. Farulewski, Nonassociative Lambek calculus with additives and context-free languages, in O. Grumberg, M. Kaminski, S. Katz, and S. Wintner (eds.), Languages: From Formal to Natural, Essays Dedicated to Nissim Francez on the Occasion of His 65th Birthday, vol. 5533 of Lecture Notes in Computer Science, Springer, Heidelberg, 2009, pp. 45–58.
Došen K.: A brief survey of frames for the Lambek calculus. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 38, 179–187 (1992)
Dunn, M., A “Gentzen system” for positive relevant implication, Journal of Synmolic Logic 38:356–357, 1974 (Abstract).
Gentzen G.: Untersuchungen über das logische Schliessen I. Mathematische Zeitschrift 39, 176–210 (1935)
Gentzen G.: Untersuchungen über das logische Schliessen II. Mathematische Zeitschrift 39, 405–431 (1935)
Kaminski M., Francez N.: Relational semantics of the Lambek calculus extended with classical propositional logic. Studia Logica 102, 479–497 (2014)
Kanazawa M.: The Lambek calculus enriched with additional connectives. Journal of Logic, Language, and Information 1, 141–171 (1992)
Kleene, S. C., Introduction to Metamathematics, North-Holland, Amsterdam, 1962.
Kozak M.: Distributive full Lambek calculus has the finite model property. Studia Logica 91, 201–216 (2009)
Kripke, S., Semantical analysis of intuitionistic logic I, in J. Crossley and M. Dummett (eds.), Formal Systems and Recursive Function, Series in Logic and Foundations of Mathematics, North Holland, Amsterdam, 1965, pp. 92–130.
Kurtonina, N., and M. Moortgat, Relational semantics for the Lambek–Grishin calculus, in C. Ebert, G. Jäger, and J. Michaelis (eds.), The Mathematics of Language, 10th and 11th Biennial Conference, MOL 10 and MOL 11, vol. 6149 of Lecture Notes in Computer Science, Springer, Heidelberg, 2009, pp. 210–222.
Lambek, J., The mathematics of sentence structure, American Mathematical Monthly 65:154–170, 1958. (Also in W. Buszkowski, W. Marciszewski, and J. van Benthem (eds.) Categorial Grammars, John Benjamins, Amsterdam, 1988.)
Mints G.E.: Cut-elimination theorem in relevant logics. Journal of Soviet Mathematics 6, 422–428 (1976)
O’Hearn, P. W., and D. J. Pym, The logic of bunched implications, Bulletin of Symbolic Logic 5:215–244, 1999.
Pym, D. J., The Semantics and Proof Theory of the Logic of Bunched Implications, vol. 26 of Applied Logic Series, Springer, Heidelberg, 2002.
Restall, G., On Logics Without Contraction, PhD Thesis, The University of Queensland, 1994.
Segerberg, K., An Essay in Classical Modal Logic, Uppsala: Filosofiska Studier 13, 1971.
Thomason R.H.: On the strong semantical completeness of the intuitionistic predicate calculus. Logic Journal of the IGPL 15, 271–286 (2007)
Troelstra, A. S., and H. Schwichtenberg, Basic Proof Theory, Cambridge University Press, Cambridge, 2000.
Zimmermann, E., Full Lambek calculus in natural deduction, Mathematical Logic Quarterly 56:85–88, 2010.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kaminski, M., Francez, N. The Lambek Calculus Extended with Intuitionistic Propositional Logic. Stud Logica 104, 1051–1082 (2016). https://doi.org/10.1007/s11225-016-9665-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-016-9665-0