Bi-Simulating in Bi-Intuitionistic Logic | Studia Logica Skip to main content
Log in

Bi-Simulating in Bi-Intuitionistic Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Bi-intuitionistic logic is the result of adding the dual of intuitionistic implication to intuitionistic logic. In this note, we characterize the expressive power of this logic by showing that the first order formulas equivalent to translations of bi-intuitionistic propositional formulas are exactly those preserved under bi-intuitionistic directed bisimulations. The proof technique is originally due to Lindström and, in contrast to the most common proofs of this kind of result, it does not use the machinery of neither saturated models nor elementary chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackburn P., de Rijke M., Venema Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  2. Flum J., First-order logic and its extensions. In Proceedings of the International Summer Institute and Logic Colloquium, Kiel 1974, Springer-Verlag, New York, 1975, pp. 248-310.

  3. Hodges W.: Model Theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  4. Goré R., Postniece L.: Combining derivations and refutations for cut-free completeness in Bi-intuitionistic logic. Journal of Logic and Computation 20(1), 233–260 (2010)

    Article  Google Scholar 

  5. Kurtonina N., de Rijke M.: Simulating without negation. Journal of Logic and Computation 7(4), 501–522 (1997)

    Article  Google Scholar 

  6. Lindström P.: On extensions of elementary logic. Theoria 35, 1–11 (1969)

    Article  Google Scholar 

  7. Marker D.: Model Theory: An Introduction. Springer, Berlin (2002)

    Google Scholar 

  8. Restall G.: An Introduction to Substructural Logics. Routledge, London (2000)

    Book  Google Scholar 

  9. Restall, G., Extending intuitionistic logic with subtraction, URL: http://consequently.org/writing/, 1997.

  10. Rauszer C.: A formalization of the propositional calculus in H-B logic. Studia Logica 33, 23–34 (1974)

    Article  Google Scholar 

  11. Rauszer C.: Model theory for an extension of intuitionistic logic. Studia Logica 36, 73–87 (1977)

    Article  Google Scholar 

  12. Rauszer C.: Applications of Kripke models to Heyting–Brouwer logic. Studia Logica 36(1/2), 61–71 (1977)

    Article  Google Scholar 

  13. Olkhovikov G. K.: Model-theoretic characterization of intuitionistic propositional formulas. The Review of Symbolic Logic 6(2), 348–365 (2013)

    Article  Google Scholar 

  14. Wansing H.: Constructive negation, implication, and co-implication. Journal of Applied Non-Classical Logics 18(2–3), 341–364 (2008)

    Article  Google Scholar 

  15. Wolter F.: On logics with coimplication. Journal of Philosophical Logic 27(4), 353–387 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Badia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badia, G. Bi-Simulating in Bi-Intuitionistic Logic. Stud Logica 104, 1037–1050 (2016). https://doi.org/10.1007/s11225-016-9664-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-016-9664-1

Keywords

Navigation