On the Deductive System of the Order of an Equationally Orderable Quasivariety | Studia Logica Skip to main content
Log in

On the Deductive System of the Order of an Equationally Orderable Quasivariety

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We consider the equationally orderable quasivarieties and associate with them deductive systems defined using the order. The method of definition of these deductive systems encompasses the definition of logics preserving degrees of truth we find in the research areas of substructural logics and mathematical fuzzy logic. We prove several general results, for example that the deductive systems so defined are finitary and that the ones associated with equationally orderable varieties are congruential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babyonishev S. V.: Fully Fregean logics. Reports on Mathematical Logic 37, 59–78 (2003)

    Google Scholar 

  2. Bergman J., Blok W. J.: Algebras defined from ordered sets and the varieties they generate. Order 23, 65–88 (2006)

    Article  Google Scholar 

  3. Bou F., Esteva F., Font J. M., Gil A., Godo L., Torrens A., Verdú V.: Logics preserving degrees of truth from varieties of residuated lattices. Journal of Logic and Computation 19, 1031–1069 (2009)

    Article  Google Scholar 

  4. Celani C., Jansana R: A new semantics for positive modal logic. Notre Dame Journal of Formal Logic 38, 1–18 (1997)

    Article  Google Scholar 

  5. Celani S., Jansana R.: A closer look at some subintuitionistic logics. Notre Dame Journal of Formal Logic 42, 225–255 (2001)

    Article  Google Scholar 

  6. Czelakowski J.: Protoalgebraic Logics. Kluwer Academic Publishers, Dordrecht (2001)

    Book  Google Scholar 

  7. Czelakowski, J., The Suszko Operator. Part I, Studia Logica, Special Issue on Algebraic Logic II 74:181–231, 2003.

  8. Dunn J. M.: Positive modal logic. Studia Logica 55, 301–317 (1995)

    Article  Google Scholar 

  9. Figallo A. Jr., Ramón G., Saad S.: A note on Hilbert algebras with infimum. Mathematica Contemporânea 24, 23–37 (2003)

    Google Scholar 

  10. Font J. M.: On substructural logics preserving degrees of truth. Bulletin of the Section of Logic 36, 117–129 (2009)

    Google Scholar 

  11. Font J. M.: Taking degrees of truth seriously. Studia Logica 91, 383–406 (2009)

    Article  Google Scholar 

  12. Font, J. M., and R. Jansana, A General Algebraic Semantics for Sentential Logics, Lecture Notes in Logic, Vol. 7, Springer, 1996, Second revised edition by ASL 2009, available at http://projecteuclid.org/euclid.lnl/1235416965.

  13. Font, J. M., R. Jansana, and D. Pigozzi, A survey of abstract algebraic logic, Studia Logica, Special Issue on Algebraic Logic 74:13–97, 2003.

  14. Font J. M., Rodríguez G.: Algebraic study of two deductive systems of relevance logic. Notre Dame Journal of Formal Logic 35, 369–397 (1994)

    Article  Google Scholar 

  15. Font, J. M., and V. Verdú, Algebraic logic for classical conjunction and disjunction, Studia Logica, Special Issue on Algebraic Logic 50:391–419, 1991.

  16. Gehrke, M., R. Jansana, and A. Palmigiano, Canonical extensions for congruential logics with the deduction theorem, Annals of Pure and Applied Logic 161:1502–1519, 2010.

  17. Jansana R.: Selfextensional logics with a conjunction. Studia Logica 84, 63–104 (2006)

    Article  Google Scholar 

  18. Jansana, R., Selfextensional logics with implication, in J.-Y. Béziau (ed.), Universal Logic, Birkhäuser, Basel, (2007).

  19. Pigozzi, D., Partially ordered varieties and quasivarieties, Manuscript available at http://orion.math.iastate.edu/dpigozzi/, 2004.

  20. Pynko A.: Definitional equivalence and algebraizability of generalized logical systems. Annals of Pure and Applied Logic 98, 1–68 (1999)

    Article  Google Scholar 

  21. Raftery J. G.: Order algebraizable logics. Annals of Pure and Applied Logic 164, 251–283 (2013)

    Article  Google Scholar 

  22. Rasiowa H.: An Algebraic Approach to Non-classical Logics. North-Holland Publishing Company, Amsterdam (1974)

    Google Scholar 

  23. Wójcicki, R., Logical matrices strongly adequate for structural sentential calculi, Bulletin de l’Académie Polonaise des Sciences Classe III XVII:333–335, 1969.

  24. Wójcicki, R. Theory of Logical Calculi. Basic Theory of Consequence Operations (Synthese Library, vol. 199), Reidel, Dordrecht, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Jansana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansana, R. On the Deductive System of the Order of an Equationally Orderable Quasivariety. Stud Logica 104, 547–566 (2016). https://doi.org/10.1007/s11225-016-9650-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-016-9650-7

Keywords

Navigation