Natural Deduction for Dual-intuitionistic Logic | Studia Logica Skip to main content
Log in

Natural Deduction for Dual-intuitionistic Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We present a natural deduction system for dual-intuitionistic logic. Its distinctive feature is that it is a single-premise multiple-conclusions system. Its relationships with the natural deduction systems for intuitionistic and classical logic are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crolard T.: Subtractive logic. Theoretical Computer Science 254, 151–185 (2001)

    Article  Google Scholar 

  2. Czemark J.: A remark on Gentzen’s calculus of sequents. Notre Dame Journal of Formal Logic 18(3), 471–474 (1977)

    Article  Google Scholar 

  3. de Campos Sanz, W., Falsity preservation. CLE e-print serie of Campinas University, Brazil 8, 2008, 2.

  4. Dummett, M., What is a theory of meaning? (II). In G. Evans, and J. McDowell, (eds.), Truth and Meaning, Oxford University Press, 1976.

  5. Dummett M.: The Logical Basis of Metaphysics. Duckworth, London. (1991)

    Google Scholar 

  6. Gentzen G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210 (1935)

    Article  Google Scholar 

  7. Goodman N.: logic of contradiction. Zeitschrift für Logik und Grundlagen der Mathematik 27, 119–126 (1981)

    Article  Google Scholar 

  8. Goré, R., Dual intuitionistic logic revisited. In R. Dyckhoff, (ed.), TABLEAUX00: Automated Reasoning with Analytic Tableaux and Related Methods, Springer, 2000.

  9. Kamide N.: A note on dual-intuitionistic logic. Mathematical Logic Quarterly 49(5), 519–524 (2003)

    Article  Google Scholar 

  10. Lopez-Escobar E. G. K.: Refutability and elementary number theory. Indagationes Mathematicae 34, 362–374 (1972)

    Google Scholar 

  11. Miller, D., Out of Error: Further Essays on Critical Rationalism. Ashgate, 2006.

  12. Popper, K., What is dialectic? In Conjectures and Refutations: the Growth of Scientific Knowledge. Routledge & Kegan Paul, London, 1963, pp. 312–335.

  13. Prawitz D.: Natural Deduction. A proof-theoretical study. Almqvist & Wiksell, Stockholm (1965)

    Google Scholar 

  14. Prawitz, D., Ideas and results in proof theory. In J. E. Fenstad, (ed.), Proceedings of the Second Scandinavian Logic Symposium, North Holland, Amsterdam, 1971, pp. 235-308.

  15. Rauszer C.: A formalization of propositional calculus of H-B logic. Studia Logica 33(1), 23–34 (1974)

    Article  Google Scholar 

  16. Rauszer C.: Semi-boolean algebras and their applications to intuitionistic logic with dual operations. Fundamaenta Mathematicae 83, 219–249 (1974)

    Google Scholar 

  17. Schroeder-Heister P.: Validity concepts in proof-theoretic semantics. Synthese 148, 525–571 (2006)

    Article  Google Scholar 

  18. Schroeder-Heister, P., Schluß und Umkehrschluß: ein Beitrag zur Definitionstheorie. In C. F. Gethmann, (ed.), Akten des XXI Deutschen Kongresses f¨ur Philosophie (Essen, 15.-19.9.2008), Deutsches Jahrbuch Philosophie, Band 3, Felix Meiner Verlag, Hamburg, 2009.

  19. Shramko Y.: Dual intuitionistic logic and a variety of negations: The logic of scientific research. Studia Logica 80, 347–367 (2005)

    Article  Google Scholar 

  20. Tranchini, L., Refutation: a proof-theoretic account. In C. Marletti, (ed.), First Pisa Colloquium in Logic, Language and Epistemology, ETS, Pisa, 2010.

  21. Troelstra, A. S., H. Schwichtemberg, Basic Proof Theory, Cambridge University Press, 1996.

  22. Urbas I.: Dual-intuitionistic logic. Notre Dame Journal of Formal Logic 37(3), 440–451 (1996)

    Article  Google Scholar 

  23. Uustalu, T., A note on anti-intuitionistic logic. Abstract presented at the Nordic Workshop on Programming Theory (NWPT’97), Tallinn, Estonia, 1997.

  24. Wansing H.: Constructive negation, implication, and co-implication. Journal of Applied Non-Classical Logics 18, 341–364 (2008)

    Article  Google Scholar 

  25. Wolter F.: On logics with coimplication. Journal of Philosophical Logic 27, 353–387 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Tranchini.

Additional information

Presented by Heinrich Wansing

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tranchini, L. Natural Deduction for Dual-intuitionistic Logic. Stud Logica 100, 631–648 (2012). https://doi.org/10.1007/s11225-012-9417-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-012-9417-8

Keywords

Navigation