Experimental Proposal for Testing the Emergence of Environment Induced (EIN) Classical Selection Rules with Biological Systems | Studia Logica
Skip to main content

Experimental Proposal for Testing the Emergence of Environment Induced (EIN) Classical Selection Rules with Biological Systems

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

According to the so-called Quantum Darwinist approach, the emergence of “classical islands” from a quantum background is assumed to obey a (selection) principle of maximal information. We illustrate this idea by considering the coupling of two oscillators (modes). As our approach suggests that the classical limit could have emerged throughout a long and progressive Evolution mechanism, it is likely that primitive living organisms behave in a “more quantum”, “less classical” way than more evolved ones. This brings us to seriously consider the possibility to measure departures from classicality exhibited by biological systems. We describe an experimental proposal the aimed at revealing the presence of entanglement in the biophotonic radiation emitted by biological sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspect A., Grangier P., Roger G.: ‘Experimental realization of Einstein-Podolsky-rosen-Bohm Gedanlenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 49(2), 91 (1982)

    Article  Google Scholar 

  2. Bell J.S.: ‘On the EPR paradox’. Physics 1, 195 (1964)

    Google Scholar 

  3. Bertet P., Auffeves A., Maioli P., Osnaghi S., Meunier T., Brune M., Raimond J.M., Haroche S.: ‘Direct Measurement of the Wigner Function of a One-Photon Fock State in a Cavity’. Phys. Rev. Lett. 89, 200402 (2002)

    Article  Google Scholar 

  4. Bruss D.: ‘Characterizing entanglement’. J. of Math. Phys. 43, 4237–4251 (2002)

    Article  Google Scholar 

  5. Chiorescu I., Bertet P., Semba K., Nakamura Y., Harmans C.J.P., Mooij J.E.: ‘Coherent dynamics of a flux qubit coupled to a harmonic oscillator’. Letters to Nature, Nature 431, 159–162 (2004)

    Article  Google Scholar 

  6. Courbage M., Durt T., Saberi M.: ‘Quantum-mechanical decay laws in the neutral kaons’. J. Phys. A: Math.-Theor. 40(11), 2773–2785 (2007)

    Article  Google Scholar 

  7. Durt, T., ‘Anthropomorphic Quantum Darwinism as an explanation for Classicality’, accepted for publication in Foundations of Science (see also ref. 40]), http://arxiv.org/pdf/quant-ph/090270.

  8. Durt, T., ‘Quantum entanglement, interaction, and the classical limit’, Z. Nat., 59 A (2004), 425, T. Durt, quant-ph/0109112 (2001).

  9. Durt, T., quoted in the New scientist, March 2004, in the paper ‘Quantum Entanglement, How the Future can influence the past’, by M. Brooks, in the article entitled ‘About entanglement and interaction in Quantum Mechanics’.

  10. Durt T.: ‘About Weyl and Wigner tomography in finite dimensional Hilbert spaces’. Open Sys. and Information Dyn. 13, 1–11 (2006)

    Article  Google Scholar 

  11. Durt T., Baudon J., Mathevet R., Robert J., Viarisde Lesegno B.: ‘Memory effects in atomic interferometry: a negative result’. In: Aerts, D., Czachor, M., Durt, T. (eds) Probing the structure of quantum mechanics: nonlinearity, nonlocality, computation and axiomatics, pp. 165–204. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  12. Durt T., Ling A., Lamas-Linares A., Kurtsiefer C.: ‘Two qubit Wigner Tomography and Quantum Cryptography’. Phys. Rev. A. 78(1), 1 (2008)

    Google Scholar 

  13. Engel G.S., Calhoun T.R., Read E.L., Ahn T-K., Manal T., Cheng Y-C., Blankenship R.E., Fleming G.R.: ‘Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems’. Nature 446, 782–786 (2007)

    Article  Google Scholar 

  14. Fedrizzi, A., T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, Detection of hidden entanglement by photon anti-bunching, arXiv0807.4437v1, 1-5 (2008).

  15. Gisin, N., ‘Bell’s inequality holds for all non-product states’, Phys. Lett. A, 154, 5, 6 (1991), 201; Home, D., and F. Selleri, ‘Bell’s theorem and the EPR paradox’, La Rivista del Nuovo Cimento della Societa Italiana di fisica, 14, 9 (1991), 24.

    Google Scholar 

  16. Glauber R.J.: ‘Classical behaviors of systems of quantum oscillators’. Phys. Lett. 21, 650 (1966)

    Article  Google Scholar 

  17. Griffiths, R.B., Consistent Quantum Theory, Cambridge University Press, 2003.

  18. Gurwitsch A.: ‘Die Natur des spezifischen Erregers der Zellteilung’. Archiv für Entwicklungsmechanik der Organismen 52, 1140 (1923)

    Google Scholar 

  19. Hackermüller L., Uttenthaler S., Hornberger K., Reiger E., Brezger B., Zeilinger A., Arndt M.: ‘Wave nature of biomolecules and fluorofullerenes’. Phys. Rev. Lett. 91, 090408 (2003)

    Article  Google Scholar 

  20. Hanbury-Brown, R., and R.Q. Twiss, ‘Interferometry of the Intensity Fluctuations in Light’, I and II, Proc. Roy. Soc., London, A242, 300 and A243, 291, (1957, 1958).

  21. Hill, S., and W.K. Wootters, ‘Entanglement of a pair of quantum bits’, Physical review letters, volume 78, nr. 26, 30 juni 1997, 5022–5025.

  22. Home D., Selleri F.: ‘Neutral kaon physics from the point of view of realism’. J. Phys. A: Math. Gen. 24, 1073–1078 (1991)

    Article  Google Scholar 

  23. Hu Xiche, Schulten K.: ‘How nature harvests sunlight’. Physics Today 50, 28–34 (1997)

    Article  Google Scholar 

  24. Katsumata M., Takeuchi A., Kazumura K., Koike T.: ‘New feature of delayed luminescence: preillumination-induced concavity and convexity in delayed luminescence decay curve in the green alga Pseudokirchneriella subcapitata’. J. Photochem. Photobiol. B. 90(3), 152–162 (2008)

    Article  Google Scholar 

  25. Laudisa F.: ‘Non-Local Realistic Theories and the Scope of the Bell Theorem’. Foundations of Physics 38, 1110–1132 (2008)

    Article  Google Scholar 

  26. Lefever R., Prigogine I.: ‘Symmetry-breaking instabilities in dissipative systems’. J. Chem. Phys. 48, 1695 (1968)

    Article  Google Scholar 

  27. Mehta C.L., Sudarshan E.C.G.: ‘Time evolution of coherent states’. Phys. Lett. 22, 574 (1966)

    Article  Google Scholar 

  28. Omnès, R., The Interpretation of Quantum Mechanics, Princeton University Press, 1994.

  29. Paz J.P., Zurek W.H.: ‘Quantum Limit of Decoherence: Environment Induced Superselection of Energy Eigenstates’. Phys. Rev. Lett. 82, 5181 (1999)

    Article  Google Scholar 

  30. Popp F.A., Yan Y.: ‘Delayed luminescence of biological systems in terms of coherent states’. Phys. Lett. A 29(1-2), 93 (2002)

    Article  Google Scholar 

  31. Popp F.A., Chang J.J., Herzog A., Yan Z., Yan Y.: ‘Evidence of nonclassical (squeezed) light in biological systems’. Phys. Lett. A, 29(1-2), 98 (2002)

    Article  Google Scholar 

  32. Rattemeyer M., Popp F.A., Nagl W.: ‘Evidence of photon emission from DNA in living systems’. Naturwissenschaften 68, 572–573 (1981)

    Article  Google Scholar 

  33. Romero-Isart O., Juan M.L., Quidant R., Cirac J.I.: ‘Toward Quantum Superposition of Living Organisms’. New. J. Phys. 12, 033015 (2010)

    Article  Google Scholar 

  34. Sarovar, M., A. Ishikazi, G.R. Fleming, and K.B. Whaley, Quantum entanglement in photosynthetic light harvesting complexes, quant-ph 0905.3787 (2009), pp. 1–9.

  35. Seevinck M.: ‘Holism, physical theories and quantum mechanics’. Studies in History and Philosophy of Modern Physics 35, 693–712 (2004)

    Article  Google Scholar 

  36. Schrödinger E.: ‘Der stetige ubergang von der mikrozur makromekanik’. Naturwiss. 14, 664 (1926)

    Article  Google Scholar 

  37. Schrödinger, E., Proc. Cambridge Philos. Soc., 31 (1935), 555. The english translation can also be found in ref. [42].

  38. Strehler B., Arnold W.A.: ‘Light production by green plants’. Fed. Am. Soc. Exp. Biol. Fed. Proc. 10, 255 (1951)

    Google Scholar 

  39. Sudarshan, E.C.G., Seven Science Quests. http://www.ph.utexas.edu/fogs/sudarshan?optical.html

  40. Vidal, C., (ed.), (2009) ‘The Evolution and Development of the Universe’, to appear in Foundations of Science, Special Issue of the Conference on the Evolution and Development of the Universe, Ecole Normale Suprieure, Paris 8-9 Oct., 2008, 355 pages. http://arxiv.org/abs/0912.5508

  41. Walls, D.F., and G. Milburn, Quantum Optics, Springer, 1995.

  42. Wheeler, J.A., and W.H. Zurek, (eds.), Quantum theory and Measurement, Princeton, N-J, 1983.

  43. Wiseman, H.M., and J. Eisert, ‘Nontrivial quantum effects in biology: A skeptical physicists’ view’, arXiv07051232, in D. Abbott (ed.), Quantum Aspects of Life, World Scientific, Singapore, 2007.

  44. Zurek, W.H., Decoherence and the Transition from Quantum to Classical-Revisited, http://arxiv.org/pdf/quant-ph/030607.

  45. Zurek W.H.: ‘Quantum Darwinism’. Nature Physics 5, 181–188 (2009)

    Article  Google Scholar 

  46. Zurek, W.H., ‘Into What Mixture Does the Wave Packet Collapse?’, Phys. Rev. D, 24 (1981), 1516; Zurek, W.H., ‘Decoherence and the Transition From Quantum to Classical’, Phys. Today, 44 (10), (1991) 36.

  47. Zurek, W.H., ‘Environment induced superselection rules’, Phys. Rev. D, 26 (1982), 1862; Zurek, W.H., ‘Preferred States, Predictability, Classicality and the Environment-Induced Decoherence’, Progress Theor. Phys., 89 (2) (1993), 281.

    Google Scholar 

  48. http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Biophoton&id=335615741 and http://pcphy4.physik.uni-regensburg.de/dfinfo.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Durt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durt, T. Experimental Proposal for Testing the Emergence of Environment Induced (EIN) Classical Selection Rules with Biological Systems. Stud Logica 95, 259–277 (2010). https://doi.org/10.1007/s11225-010-9247-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-010-9247-5

Keywords