Abstract
According to the so-called Quantum Darwinist approach, the emergence of “classical islands” from a quantum background is assumed to obey a (selection) principle of maximal information. We illustrate this idea by considering the coupling of two oscillators (modes). As our approach suggests that the classical limit could have emerged throughout a long and progressive Evolution mechanism, it is likely that primitive living organisms behave in a “more quantum”, “less classical” way than more evolved ones. This brings us to seriously consider the possibility to measure departures from classicality exhibited by biological systems. We describe an experimental proposal the aimed at revealing the presence of entanglement in the biophotonic radiation emitted by biological sources.
Similar content being viewed by others
References
Aspect A., Grangier P., Roger G.: ‘Experimental realization of Einstein-Podolsky-rosen-Bohm Gedanlenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 49(2), 91 (1982)
Bell J.S.: ‘On the EPR paradox’. Physics 1, 195 (1964)
Bertet P., Auffeves A., Maioli P., Osnaghi S., Meunier T., Brune M., Raimond J.M., Haroche S.: ‘Direct Measurement of the Wigner Function of a One-Photon Fock State in a Cavity’. Phys. Rev. Lett. 89, 200402 (2002)
Bruss D.: ‘Characterizing entanglement’. J. of Math. Phys. 43, 4237–4251 (2002)
Chiorescu I., Bertet P., Semba K., Nakamura Y., Harmans C.J.P., Mooij J.E.: ‘Coherent dynamics of a flux qubit coupled to a harmonic oscillator’. Letters to Nature, Nature 431, 159–162 (2004)
Courbage M., Durt T., Saberi M.: ‘Quantum-mechanical decay laws in the neutral kaons’. J. Phys. A: Math.-Theor. 40(11), 2773–2785 (2007)
Durt, T., ‘Anthropomorphic Quantum Darwinism as an explanation for Classicality’, accepted for publication in Foundations of Science (see also ref. 40]), http://arxiv.org/pdf/quant-ph/090270.
Durt, T., ‘Quantum entanglement, interaction, and the classical limit’, Z. Nat., 59 A (2004), 425, T. Durt, quant-ph/0109112 (2001).
Durt, T., quoted in the New scientist, March 2004, in the paper ‘Quantum Entanglement, How the Future can influence the past’, by M. Brooks, in the article entitled ‘About entanglement and interaction in Quantum Mechanics’.
Durt T.: ‘About Weyl and Wigner tomography in finite dimensional Hilbert spaces’. Open Sys. and Information Dyn. 13, 1–11 (2006)
Durt T., Baudon J., Mathevet R., Robert J., Viarisde Lesegno B.: ‘Memory effects in atomic interferometry: a negative result’. In: Aerts, D., Czachor, M., Durt, T. (eds) Probing the structure of quantum mechanics: nonlinearity, nonlocality, computation and axiomatics, pp. 165–204. World Scientific, Singapore (2002)
Durt T., Ling A., Lamas-Linares A., Kurtsiefer C.: ‘Two qubit Wigner Tomography and Quantum Cryptography’. Phys. Rev. A. 78(1), 1 (2008)
Engel G.S., Calhoun T.R., Read E.L., Ahn T-K., Manal T., Cheng Y-C., Blankenship R.E., Fleming G.R.: ‘Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems’. Nature 446, 782–786 (2007)
Fedrizzi, A., T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, Detection of hidden entanglement by photon anti-bunching, arXiv0807.4437v1, 1-5 (2008).
Gisin, N., ‘Bell’s inequality holds for all non-product states’, Phys. Lett. A, 154, 5, 6 (1991), 201; Home, D., and F. Selleri, ‘Bell’s theorem and the EPR paradox’, La Rivista del Nuovo Cimento della Societa Italiana di fisica, 14, 9 (1991), 24.
Glauber R.J.: ‘Classical behaviors of systems of quantum oscillators’. Phys. Lett. 21, 650 (1966)
Griffiths, R.B., Consistent Quantum Theory, Cambridge University Press, 2003.
Gurwitsch A.: ‘Die Natur des spezifischen Erregers der Zellteilung’. Archiv für Entwicklungsmechanik der Organismen 52, 1140 (1923)
Hackermüller L., Uttenthaler S., Hornberger K., Reiger E., Brezger B., Zeilinger A., Arndt M.: ‘Wave nature of biomolecules and fluorofullerenes’. Phys. Rev. Lett. 91, 090408 (2003)
Hanbury-Brown, R., and R.Q. Twiss, ‘Interferometry of the Intensity Fluctuations in Light’, I and II, Proc. Roy. Soc., London, A242, 300 and A243, 291, (1957, 1958).
Hill, S., and W.K. Wootters, ‘Entanglement of a pair of quantum bits’, Physical review letters, volume 78, nr. 26, 30 juni 1997, 5022–5025.
Home D., Selleri F.: ‘Neutral kaon physics from the point of view of realism’. J. Phys. A: Math. Gen. 24, 1073–1078 (1991)
Hu Xiche, Schulten K.: ‘How nature harvests sunlight’. Physics Today 50, 28–34 (1997)
Katsumata M., Takeuchi A., Kazumura K., Koike T.: ‘New feature of delayed luminescence: preillumination-induced concavity and convexity in delayed luminescence decay curve in the green alga Pseudokirchneriella subcapitata’. J. Photochem. Photobiol. B. 90(3), 152–162 (2008)
Laudisa F.: ‘Non-Local Realistic Theories and the Scope of the Bell Theorem’. Foundations of Physics 38, 1110–1132 (2008)
Lefever R., Prigogine I.: ‘Symmetry-breaking instabilities in dissipative systems’. J. Chem. Phys. 48, 1695 (1968)
Mehta C.L., Sudarshan E.C.G.: ‘Time evolution of coherent states’. Phys. Lett. 22, 574 (1966)
Omnès, R., The Interpretation of Quantum Mechanics, Princeton University Press, 1994.
Paz J.P., Zurek W.H.: ‘Quantum Limit of Decoherence: Environment Induced Superselection of Energy Eigenstates’. Phys. Rev. Lett. 82, 5181 (1999)
Popp F.A., Yan Y.: ‘Delayed luminescence of biological systems in terms of coherent states’. Phys. Lett. A 29(1-2), 93 (2002)
Popp F.A., Chang J.J., Herzog A., Yan Z., Yan Y.: ‘Evidence of nonclassical (squeezed) light in biological systems’. Phys. Lett. A, 29(1-2), 98 (2002)
Rattemeyer M., Popp F.A., Nagl W.: ‘Evidence of photon emission from DNA in living systems’. Naturwissenschaften 68, 572–573 (1981)
Romero-Isart O., Juan M.L., Quidant R., Cirac J.I.: ‘Toward Quantum Superposition of Living Organisms’. New. J. Phys. 12, 033015 (2010)
Sarovar, M., A. Ishikazi, G.R. Fleming, and K.B. Whaley, Quantum entanglement in photosynthetic light harvesting complexes, quant-ph 0905.3787 (2009), pp. 1–9.
Seevinck M.: ‘Holism, physical theories and quantum mechanics’. Studies in History and Philosophy of Modern Physics 35, 693–712 (2004)
Schrödinger E.: ‘Der stetige ubergang von der mikrozur makromekanik’. Naturwiss. 14, 664 (1926)
Schrödinger, E., Proc. Cambridge Philos. Soc., 31 (1935), 555. The english translation can also be found in ref. [42].
Strehler B., Arnold W.A.: ‘Light production by green plants’. Fed. Am. Soc. Exp. Biol. Fed. Proc. 10, 255 (1951)
Sudarshan, E.C.G., Seven Science Quests. http://www.ph.utexas.edu/fogs/sudarshan?optical.html
Vidal, C., (ed.), (2009) ‘The Evolution and Development of the Universe’, to appear in Foundations of Science, Special Issue of the Conference on the Evolution and Development of the Universe, Ecole Normale Suprieure, Paris 8-9 Oct., 2008, 355 pages. http://arxiv.org/abs/0912.5508
Walls, D.F., and G. Milburn, Quantum Optics, Springer, 1995.
Wheeler, J.A., and W.H. Zurek, (eds.), Quantum theory and Measurement, Princeton, N-J, 1983.
Wiseman, H.M., and J. Eisert, ‘Nontrivial quantum effects in biology: A skeptical physicists’ view’, arXiv07051232, in D. Abbott (ed.), Quantum Aspects of Life, World Scientific, Singapore, 2007.
Zurek, W.H., Decoherence and the Transition from Quantum to Classical-Revisited, http://arxiv.org/pdf/quant-ph/030607.
Zurek W.H.: ‘Quantum Darwinism’. Nature Physics 5, 181–188 (2009)
Zurek, W.H., ‘Into What Mixture Does the Wave Packet Collapse?’, Phys. Rev. D, 24 (1981), 1516; Zurek, W.H., ‘Decoherence and the Transition From Quantum to Classical’, Phys. Today, 44 (10), (1991) 36.
Zurek, W.H., ‘Environment induced superselection rules’, Phys. Rev. D, 26 (1982), 1862; Zurek, W.H., ‘Preferred States, Predictability, Classicality and the Environment-Induced Decoherence’, Progress Theor. Phys., 89 (2) (1993), 281.
http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Biophoton&id=335615741 and http://pcphy4.physik.uni-regensburg.de/dfinfo.html
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Durt, T. Experimental Proposal for Testing the Emergence of Environment Induced (EIN) Classical Selection Rules with Biological Systems. Stud Logica 95, 259–277 (2010). https://doi.org/10.1007/s11225-010-9247-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-010-9247-5