Socratic Proofs and Paraconsistency: A Case Study | Studia Logica
Skip to main content

Socratic Proofs and Paraconsistency: A Case Study

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

This paper develops a new proof method for two propositional paraconsistent logics: the propositional part of Batens' weak paraconsistent logic CLuN and Schütte's maximally paraconsistent logic Φv. Proofs are de.ned as certain sequences of questions. The method is grounded in Inferential Erotetic Logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BATENS, D., ‘Paraconsistent Extensional Propositional Logics’, Loqique & Analyse 90-91:195–234, 1980.

    Google Scholar 

  2. BATENS, D., ‘Dialectical Dynamics Within Formal Logics’, Logique & Analyse 114:161–173, 1986.

    Google Scholar 

  3. BATENS, D., ‘Dynamic Dialectical Logics’, in G. Priest, R. Routley, and J. Norman, (eds.), Paraconsistent Logic, pp. 187–217, Philosophia Verlag, München 1989.

    Google Scholar 

  4. BATENS, D., ‘Inconsistency-Adaptive Logics’, in E. Orłowska, (ed.), Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, pp. 445–472, Springer Verlag, Heidelberg—New York 1998.

    Google Scholar 

  5. BATENS, D., ‘Rich Inconsistency-Adaptive Logics. The Clash between Heuristic Effciency and Realistic Reconstruction’, in Logique en perspective. Mélanges offerts à Paul Gochet, eds. E. Grillet and F. Beets, pp. 513–543, Editions OUSIA, 2000.

  6. BATENS, D., and K. DE CLERCQ, ‘A Rich Paraconsistent Extension of Full Positive Logic’, http://logica.Ugent.be/centrum/writings

  7. BATENS, D., K. DE CLERCQ, and N. KURTONINA, ‘Embedding and Interpolation for some Paralogics. The Propositional Case’, Reports on Mathematical Logic 33:29–44, 1999.

    Article  Google Scholar 

  8. BATENS, D., and J. MEHEUS, ‘The Adaptive Logic of Compatibility’, Studia Logica 66:327–348, 2000.

    Article  Google Scholar 

  9. BATENS, D., and J. MEHEUS, ‘A Tableau Method for Inconsistency-Adaptive Logics’, in Automated Reasoning with Analytic Tableaux and Related Methods, ed. R. Dyckhoff, Lecture Notes in Artificial Intelligence, Springer, Berlin 2000, pp. 127–142.

  10. BATENS, D., and J. MEHEUS, ‘Shortcuts and DynamicMarking in the Tableau Method for Adaptive Logics’, Studia Logica 69:221–248, 2001.

    Article  Google Scholar 

  11. SHOESMITH, D.J., and T.J. SMILEY, Multiple-conclusion Logic, Cambridge University Press, Cambridge 1978.

    Google Scholar 

  12. SCHÜTTE, K., Beweistheorie, Springer, Berlin 1960.

    Google Scholar 

  13. SMULLYAN, R.M., First-Order Logic, Springer, Berlin 1968.

    Google Scholar 

  14. TARSKI, A., ‘A simplified formalization of predicate logic with identity’, Archiv für Mathematische Logik und Grundlagenforschung 7:61–79, 1965.

    Article  Google Scholar 

  15. WIŚNIEWSKI, A., The Posing of Questions: Logical Foundations of Erotetic Inferences, Kluwer Academic Publishers, Dordrecht – Boston – London 1995.

    Google Scholar 

  16. WIŚNIEWSKI, A., ‘The logic of questions as a theory of erotetic arguments’, Synthese 109(1):1–25, 1996.

    Article  Google Scholar 

  17. WIŚNIEWSKI, A., ‘Questions and Inferences’, Logique et Analyse 173-174-175:5–43, 2001.

    Google Scholar 

  18. WIŚNIEWSKI, A., ‘Socratic Proofs’, Journal of Philosophical Logic 33(3): 299–326, 2004.

    Article  Google Scholar 

  19. WIŚNIEWSKI, A., and V. Shangin, ‘Socratic Proofs for Quantifiers’, Journal of Philosophical Logic, forthcoming.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Wiśniewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiśniewski, A., Vanackere, G. & Leszczyńska, D. Socratic Proofs and Paraconsistency: A Case Study. Stud Logica 80, 431–466 (2005). https://doi.org/10.1007/s11225-005-8477-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-005-8477-4

Keywords