Abstract
In this paper, we propose an efficient variance reduction approach for additive functionals of Markov chains relying on a novel discrete-time martingale representation. Our approach is fully non-asymptotic and does not require the knowledge of the stationary distribution (and even any type of ergodicity) or specific structure of the underlying density. By rigorously analyzing the convergence properties of the proposed algorithm, we show that its cost-to-variance product is indeed smaller than one of the naive algorithms. The numerical performance of the new method is illustrated for the Langevin-type Markov chain Monte Carlo (MCMC) methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Assaraf, R., Caffarel, M.: Zero-variance principle for Monte Carlo algorithms. Phys. Rev. Lett. 83(23), 4682 (1999)
Belomestny, D., Häfner, S., Urusov, M.: Variance reduction for discretised diffusions via regression. J. Math. Anal. Appl. 458, 393–418 (2018)
Belomestny, D., Iosipoi, L., Moulines, E., Naumov, A., Samsonov, S.: Variance reduction for Markov chains with application to MCMC. arXiv preprint arXiv:1910.03643 (2019)
Ben Zineb, T., Gobet, E.: Preliminary control variates to improve empirical regression methods. Monte Carlo Methods Appl. 19(4), 331–354 (2013). https://doi.org/10.1515/mcma-2013-0015
Bortoli, V.D., Durmus, A.: Convergence of diffusions and their discretizations: from continuous to discrete processes and back (2020)
Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford (2013)
Brosse, N., Durmus, A., Meyn, S., Moulines, E.: Diffusion approximations and control variates for MCMC. arXiv preprint arXiv:1808.01665 (2018)
Constantine, G.M.: Combinatorial Theory and Statistical Design. Wiley, New York (1987)
Constantine, G.M., Savits, T.H.: A multivariate faa di bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996)
Dalalyan, A.S.: Theoretical guarantees for approximate sampling from smooth and log-concave densities. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 79(3), 651–676 (2017)
Dellaportas, P., Kontoyiannis, I.: Control variates for estimation based on reversible Markov chain Monte Carlo samplers. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 74(1), 133–161 (2012)
Dimov, I.T.: Monte Carlo Methods for Applied Scientists. World Scientific, Singapore (2008)
Douc, R., Moulines, E., Priouret, P., Soulier, P.: Markov Chains. Springer, New York (2018)
Durmus, A., Moulines, E.: Nonasymptotic convergence analysis for the unadjusted Langevin algorithm. Ann. Appl. Probab. 27(3), 1551–1587 (2017). https://doi.org/10.1214/16-AAP1238
Glasserman, P.: Monte Carlo Methods in Financial Engineering, vol. 53. Springer, Berlin (2013)
Gobet, E.: Monte-Carlo Methods and Stochastic Processes. CRC Press, Boca Raton (2016). (ISBN 978-1-4987-4622-9. From linear to non-linear)
Györfi, L., Kohler, M., Krzyzak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer, Berlin (2006)
Heinrich, S., Sindambiwe, E.: Monte Carlo complexity of parametric integration. J. Complex. 15(3), 317–341 (1999)
Henderson, S.G.: Variance reduction via an approximating Markov process. PhD thesis, Stanford University (1997)
Henderson, S.G., Simon, B.: Adaptive simulation using perfect control variates. J. Appl. Probab. 41(3), 859–876 (2004). https://doi.org/10.1239/jap/1091543430
Lamberton, D., Pagès, G.: Recursive computation of the invariant distribution of a diffusion. Bernoulli 8(3), 367–405 (2002)
Lemaire, V.: An adaptive scheme for the approximation of dissipative systems. Stoch. Process. Appl. 117(10), 1491–1518 (2007). https://doi.org/10.1016/j.spa.2007.02.004
Liu, J., Zhao, W.: Dynamic analysis of stochastic Lotka–Volterra predator-prey model with discrete delays and feedback control. Complexity 1–15(11), 2019 (2019). https://doi.org/10.1155/2019/4873290
Mao, X., Sabanis, S., Renshaw, E.: Asymptotic behaviour of the stochastic Lotka–Volterra model. J. Math. Anal. Appl. 287(1), 141–156 (2003). https://doi.org/10.1016/S0022-247X(03)00539-0
Mattingly, J., Stuart, A., Higham, D.: Ergodicity for sdes and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101(2), 185–232 (2002). https://doi.org/10.1016/S0304-4149(02)00150-3
Mengersen, K., Tweedie, R.L.: Rates of convergence of the Hastings and Metropolis algorithms. Ann. Stat. 24, 101–121 (1996)
Mira, A., Solgi, R., Imparato, D.: Zero variance Markov chain Monte Carlo for Bayesian estimators. Stat. Comput. 23(5), 653–662 (2013)
Oates, C.J., Girolami, M., Chopin, N.: Control functionals for Monte Carlo integration. J. R. Stat. Soc. Ser. B (Stat. Methodol.) (2016). https://doi.org/10.1111/rssb.12185
Oates, C.J., Girolami, M., Chopin, N.: Control functionals for Monte Carlo integration. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 79(3), 695–718 (2017)
Pagès, G., Panloup, F.: Weighted multilevel Langevin simulation of invariant measures. Ann. Appl. Probab. 28(6), 3358–3417 (2018). https://doi.org/10.1214/17-AAP1364
Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, vol. 10. Wiley, New York (2016)
South, L.F., Oates, C.J., Mira, A., Drovandi, C.: Regularised zero-variance control variates. arXiv preprint arXiv:1811.05073 (2018)
South, L.F., Riabiz, M., Teymur, O., Oates, C. et al.: Post-processing of MCMC. arXiv preprint arXiv:2103.16048 (2021)
Acknowledgements
The publication was supported by the grant for research centers in the field of AI provided by the Analytical Center for the Government of the Russian Federation (ACRF) in accordance with the agreement on the provision of subsidies (identifier of the agreement 000000D730321P5Q0002) and the agreement with HSE University No. 70-2021-00139.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Belomestny, D., Moulines, E. & Samsonov, S. Variance reduction for additive functionals of Markov chains via martingale representations. Stat Comput 32, 16 (2022). https://doi.org/10.1007/s11222-021-10073-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11222-021-10073-z