Tree based credible set estimation | Statistics and Computing Skip to main content
Log in

Tree based credible set estimation

  • Published:
Statistics and Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Estimating a joint Highest Posterior Density credible set for a multivariate posterior density is challenging as dimension gets larger. Credible intervals for univariate marginals are usually presented for ease of computation and visualisation. There are often two layers of approximation, as we may need to compute a credible set for a target density which is itself only an approximation to the true posterior density. We obtain joint Highest Posterior Density credible sets for density estimation trees given by Li et al. (in: Lee, Sugiyama, Luxburg, Guyon, Garnett (eds) Advances in neural information processing systems, Curran Associates Inc, Red Hook, 2016) approximating a density truncated to a compact subset of \(\mathbb {R}^d\) as this is preferred to a copula construction. These trees approximate a joint posterior distribution from posterior samples using a piecewise constant function defined by sequential binary splits. We use a consistent estimator to measure of the symmetric difference between our credible set estimate and the true HPD set of the target density samples. This quality measure can be computed without the need to know the true set. We show how the true-posterior-coverage of an approximate credible set estimated for an approximate target density may be estimated in doubly intractable cases where posterior samples are not available. We illustrate our methods with simulation studies and find that our estimator is competitive with existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/galaxies.html.

  2. http://www.ats.ucla.edu/stat/data/hsbdemo.dta.

  3. https://www.ofx.com/en-nz/forex-news/historical-exchange-rates/.

References

  • Aitkin, M., Wilson, G.T.: Mixture models, outliers, and the EM algorithm. Technometrics 22, 325–331 (1980)

    Article  MATH  Google Scholar 

  • Anderson, A.J., Smith, I.W.G., Higham, T.F.G.: Shag river mouth: the archaeology of an early Southern Maori village. In: Anderson, A.J., Allingham, B., Smith, I.W.G. (Eds.), Shag River Mouth, Volume 27, pp. 61–69. Canberra: Archaeology and Natural History Publications (1996)

  • Baillo, A., Cuevas, A.: Image estimators based on marked bins. Statistics 40(4), 277–288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Baillo, A., Cuevas, A., Justel, A.: Set estimation and nonparametric detection. Can. J. Stat. 28(4), 765–782 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002)

    Article  Google Scholar 

  • Bernardo, J.M.: Intrinsic credible regions: an objective Bayesian approach to interval estimation. TEST 14(2), 317–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Besag, J., Green, P., Higdon, D., Mengersen, K.: Bayesian computation and stochastic systems. Stat. Sci. 10(1), 3–41 (1995)

    MathSciNet  MATH  Google Scholar 

  • Blum, M.G.B.: Approximate Bayesian computation: a nonparametric perspective. J. Am. Stat. Assoc. 105, 1178–1187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G.E.P., Tiao, G.C.: Multiparameter problems from a Bayesian point of view. Ann. Math. Stat. 36, 1468–1482 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth adn Brooks, Monterey (1984)

    MATH  Google Scholar 

  • Cadre, B.: Kernel estimation of density level sets. J. Multivar. Anal. 97, 999–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, M.-H., Shao, Q.-M.: Monte Carlo estimation of Bayesian credible and HPD intervals. J. Comput. Graph. Stat. 8(1), 69–92 (1999)

    MathSciNet  Google Scholar 

  • Chen, Y.-C., Genovese, C.R., Wasserman, L.: Density level sets: asymptotics, inference and visualization. J. Am. Stat. Assoc. 112(520), 1684–1696 (2017)

    Article  MathSciNet  Google Scholar 

  • Chipman, H.A., George, E.I., McCulloch, R.E.: BART: Bayesian additive regression trees. Ann. Appl. Stat. 4, 266–298 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Druilhet, P., Marin, J.-M.: Invariant HPD credible sets and MAP estimators. Bayesian Anal. 2(4), 681–691 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Durante, D., Rigon, T.: Conditionally conjugate mean-field variational Bayes for logistic models. Stat. Sci. 34, 472–485 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Held, L.: Simultaneous posterior probability statements from Monte Carlo output. J. Comput. Graph. Stat. 13, 20–35 (2004)

    Article  MathSciNet  Google Scholar 

  • Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J., Reimer, R.W., Turney, C.S., Zimmerman, S.R.: SHCal13 Southern Hemisphere Calibration, 0–50,000 years cal bp. Radiocarbon 55(4), 1889–1903 (2013)

    Article  Google Scholar 

  • Jaakkola, T., Jorda, M.I.: Bayesian parameter estimation via variational methods. Stat. Comput. 10, 25–37 (2000)

    Article  Google Scholar 

  • Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37, 183–233 (1999)

    Article  MATH  Google Scholar 

  • Klemelä, J.: Visualization of multivariate density estimates with level set trees. J. Comput. Graph. Stat. 13(3), 599–620 (2004)

    Article  MathSciNet  Google Scholar 

  • Krivobokova, T., Kneib, T., Claeskens, G.: Simultaneous confidence bands for penalized spline estimators. J. Am. Stat. Assoc. 105, 852–863 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 29–37 (2011)

  • Lee, J., Nicholls, G.K., Ryder, R.J.: Calibration procedures for approximate Bayesian credible sets. Bayesian Anal. 14(4), 1245–1269 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, D., Yang, K., Wong, W.-H.: Density estimation via discrepancy based adaptive sequential partition. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 29, pp. 1091–1099. Curran Associates Inc (2016)

  • Liu, L., Li, D., Wong,W.-H.: Convergence rates of a partition based Bayesian multivariate density estimation method. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 30, pp. 4738–4746. Curran Associates Inc (2017)

  • Lu, L., Jiang, H., Wong, W.-H.: Multivariate density estimation by Bayesian sequential partitioning. J. Am. Stat. Assoc. 108(504), 1402–1410 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Magdon-Ismail, M., Atiya, A.F.: Neural networks for density estimation. In: Kearns, M.J., Solla, S.A., Cohn, D.A. (Eds.), Advances in Neural Information Processing Systems 11, pp. 522–528 (1999)

  • Mammen, E., Polonik, W.: Confidence regions for level sets. J. Multivar. Anal. 122, 202–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Marjoram, P.: Approximation Bayesian Computation. OA. Genetics 1(3), 853–862 (2013)

    Google Scholar 

  • Mason, D.M., Polonik, W.: Asymptotic normality of plug-in level set estimates. Ann. Appl. Probab. 19(3), 1108–1142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan, G. Krishnan, T.: The EM Algorithm and Extensions, 2Ed, Volume 8. John Wiley & Sons (2008)

  • Nicholls, G.K., Jones, M.: Radiocarbon dating with temporal order constraints. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 50(4), 503–521 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 84(6), 957–1038 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics (1992)

  • Ormerod, J.T., Wand, M.P.: Explaining variational approximations. Am. Stat. 64, 140–153 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A.B.: Multidimensional variation for Quasi-Monte Carlo. In: International Conference on Statistics in honor of Professor Kai-Tai Fang’s 65th birthday, pp. 49–74 (2005)

  • Papamakarios, G., Pavlakou, T., Murray, I.: Masked autoregressive flow for density estimation. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 30, pp. 2338–2347 (2017)

  • Pearson, K.: Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. (A) 185, 71–110 (1894)

    Article  MATH  Google Scholar 

  • Postman, M., Huchra, J.P., Geller, M.J.: Probes of large-scale structures in the Corona Borealis region. Astron. J. 92, 1238–1247 (1986)

    Article  Google Scholar 

  • Ram, P. Gray, A.G.: Density estimation trees. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 627–635 (2011)

  • Rousseau, J., Robert, C.P.: Discussion on a paper of J. Bernardo: Intrinsic credible regions; an objective Bayesian approach to interval estimation. Test 14(2), 367–369 (2005)

  • Roy, D.M., Teh, Y.W.: The Mondrian process. In: Proceedings of the 21st International Conference on Neural Information Processing Systems, NIPS’08, pp. 1377–1384. Curran Associates Inc (2008)

  • Scott, D.W.: On optimal and data-based histograms. Biometrika 66, 605–610 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, D.W.: Frequency polygons: theory and application. J. Am. Stat. Assoc. 80, 348–354 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, D.W., Tapia, J.R., Thompson, R.A.: Kernel density estimation revisited. J. Nonlinear Anal. Theory Methods Appl. 1, 339–372 (1977)

  • Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  • Sklar, A.: Fonctions de repartition an dimensions et leurs marges, Volume 8. Inst. Statist. Univ. Paris (1959)

  • Sørbye, S.H., Rue, H.: Simultaneous credible bands for latent Gaussian models. Scand. J. Stat. 38, 712–725 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Stone, C.J.: The use of polynomial splines and their tensor products in multivariate function estimation. Ann. Stat. 22, 118–171 (1994)

    MathSciNet  MATH  Google Scholar 

  • Stuetzle, W., Nugent, R.: A generalized single linkage method for estimating the cluster tree of a density. J. Comput. Graph. Stat. 19(2), 397–418 (2010)

    Article  MathSciNet  Google Scholar 

  • Thulin, M.: Decision-theoretic justifications for Bayesian hypothesis testing using credible sets. J. Stat. Plan. Inference 146, 133–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Tsybakov, A.B.: On nonparametric estimation of density level sets. Ann. Stat. 25, 948–969 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X., Wang, Y.: Nonparametric multivariate density estimation using mixtures. Stat. Comput. 25, 349–364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wegmann, D., Leuenberger, C., Excoffier, L.: Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics 182, 1207–1218 (2009)

    Article  Google Scholar 

  • Wu, K., Hou, W., Yang, H.: Density estimation via the Random-Forest method. Comput. Stat. Theory Methods 47(4), 877–889 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Xing, H., Nicholls, G.K., Lee, J.E.: Calibrated approximate Bayesian inference. In: Proceedings of the 36th International Conference on Machine Learning, PMLR, Volume 97, pp. 6912–6920 (2019)

  • Xing, H., Nicholls, G.K., Lee, J.E.: Distortion estimates for approximate Bayesian inference. In: Peters, J., Sontag, D. (Eds.), Proceedings of Machine Learning Research, Volume 124, pp. 1208–1217. PMLR (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Eun Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The density estimation tree algorithm of Li et al. (2016) and the maximum gap calculation it uses are given in this “Appendix”.

1.1 Maximum gap calculation

In order to find a good split for leaf \(\Delta _k=[\pmb a^{(k)},\pmb b^{(k)}]\), defined in Step 5 of Algorithm 3, and given a set of points \(\{{\tilde{\pmb s}}^{(k,j)}\}_{j=1}^{n_k}\) with \({\tilde{\pmb s}}^{(k,j)}=({\tilde{s}}^{(k,j)}_{1},\ldots ,{\tilde{s}}^{(k,j)}_{d})\), we divide the i-th dimension into \(m_g\) equal-sized bins, \([a_{k,i}+(l-1)\delta _{k,i},a_{k,i}+l\delta _{k,i}]\), \(i=1,\ldots ,d\) and \(l=1,\ldots ,m_g\) where \(\delta _{k,i}=(b_{k,i}-a_{k,i})/m_g\). There are in total \((m_g-1)d\) gaps. Each gap is defined by \(h_{l,i}=| (1/n_k) \sum ^{n_k}_{j=1} \mathbbm {1}( {\tilde{s}}^{(k,j)}_i < a_{k,i}+l\delta _{k,i}) -l/m_g | \), \(l=1,\ldots ,(m_g-1)\) and \(i=1,\ldots ,d\). The splitting hyperplane is the gap with the maximum h-value.

figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.E., Nicholls, G.K. Tree based credible set estimation. Stat Comput 31, 69 (2021). https://doi.org/10.1007/s11222-021-10045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-021-10045-3

Keywords

Navigation