Abstract
Quantile regression models are a powerful tool for studying different points of the conditional distribution of univariate response variables. Their multivariate counterpart extension though is not straightforward, starting with the definition of multivariate quantiles. We propose here a flexible Bayesian quantile regression model when the response variable is multivariate, where we are able to define a structured additive framework for all predictor variables. We build on previous ideas considering a directional approach to define the quantiles of a response variable with multiple outputs, and we define noncrossing quantiles in every directional quantile model. We define a Markov chain Monte Carlo (MCMC) procedure for model estimation, where the noncrossing property is obtained considering a Gaussian process design to model the correlation between several quantile regression models. We illustrate the results of these models using two datasets: one on dimensions of inequality in the population, such as income and health; the second on scores of students in the Brazilian High School National Exam, considering three dimensions for the response variable.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Here it was possible to answer the questionnaire based on the education of the man in charge of the person taking the examination. The same applies for mother education.
References
Belitz, C., Brezger, A., Klein, N., Kneib, T., Lang, S., Umlauf, N.: BayesX - Software for Bayesian inference in structured additive regression models: Version 3.0. http://www.bayesx.org (2015)
Bondell, H., Reich, B., Wang, H.: Noncrossing quantile regression curve estimation. Biometrika 97, 825–838 (2010)
Carlier, G., Chernozhukov, V., Galichon, A.: Vector quantile regression: an optimal transport approach. Ann. Stat. 44, 1165–1192 (2016)
Carlier, G., Chernozhukov, V., Galichon, A.: Vector quantile regression beyond the specified case. J. Multivar. Anal. 161, 96–102 (2017)
Chernozhukov, V., Fernández-Val, I., Galichon, A.: Improving point and interval estimators of monotone functions by rearrangement. Biometrika 96, 559–575 (2009)
Chernozhukov, V., Galichon, A., Hallin, M., Henry, M.: Monge-Kantorovich depth, quantiles, ranks and signs. Ann. Stat. 45, 223–256 (2017)
Dyckerhoff, R., Mozharovskyi, P.: Exact computation of the halfspace depth. Comput. Stat. Data Anal. 98, 19–30 (2016)
Gelman, A., Rubin, D.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)
Guggisberg, M.: A Bayesian Approach to Multiple-Output Quantile Regression (2019). arXiv:1909.02623
Hallin, M., Paindaveine, D., Šiman, M.: Multivariate quantiles and multiple-output regression quantiles: From l1 optimization to halfspace depth. Ann. Stat. 38, 635–669 (2010)
Hallin, M., Lu, Z., Paindaveine, D., Šiman, M.: Local bilinear multiple-output quantile/depth regression. Bernoulli 21, 1435–1466 (2015)
Hallin, M., Šiman, M.: Multiple-output quantile regression. In: Koenker, R., Chernozhukov, V., He, X., Peng, L. (eds.) Handbook of Quantile Regression. Chapman and Hall/CRC (2017)
He, X.: Quantile curves without crossing. Am. Stat. 51, 186–192 (1997)
Ji, Y., Lin, N., Zhang, B.: Model selection in binary and tobit quantile regression using the gibbs sampler. Comput. Stat. Data Anal. 56, 827–839 (2012)
Klein, N., Kneib, T.: Simultaneous inference in structured additive conditional copula regression models: a unifying bayesian approach. Stat. Comput. 26, 841–860 (2016)
Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)
Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978)
Koenker, R., Machado, J.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94, 1296–1310 (1999)
Kong, L., Mizera, I.: Quantile tomography: using quantiles with multivariate data. Stat. Sin. 22, 1589–1610 (2012)
Kozumi, H., Kobayashi, G.: Gibbs sampling methods for bayesian quantile regression. J. Stat. Comput. Simul. 81, 1565–1578 (2011)
Lang, S., Umlauf, N., Wechselberger, P., Harttgen, K., Kneib, T.: Multilevel structured additive regression. Stat. Comput. 24, 223–238 (2014)
Machado, J.A.F., Silva, J.M.C.S.: Quantiles for counts. J. Am. Stat. Assoc. 100, 1226–1237 (2005)
McCowan, T.: Expansion without equity: an analysis of current policy on access to higher education in Brazil. High. Educ. 53, 579–598 (2007)
Mosler, K.: Depth statistics. Becker, C., Fried, R., Kuhnt, S. (eds) Robustness and Complex Data Structures, Festschrift in Honour of Ursula Gather, pp. 17–34. Springer, Berlin (2013)
Paindaveine, D., Šiman, M.: Computing multiple-output regression quantile regions. Comput. Stat. Data Anal. 56, 840–853 (2012)
Reich, B.J., Fuentes, M., Dunson, D.B.: Bayesian spatial quantile regression. J. Am. Stat. Assoc. 106, 6–20 (2011)
Rodrigues, T., Dortet-Bernadet, J.L., Fan, Y.: Pyramid quantile regression. J. Comput. Graph. Stat. (2019)
Rodrigues, T., Dortet-Bernadet, J.L., Fan, Y.: Simultaneous fitting of bayesian penalised quantile splines. Comput. Stat. Data Anal. 134, 93–109 (2019b)
Rodrigues, T., Fan, Y.: Regression adjustment for noncrossing Bayesian quantile regression. J. Comput. Graph. Stat. 26, 275–284 (2017)
Serfling, R.: Quantile functions for multivariate analysis: approaches and applications. Stat. Neerl. 56, 214–232 (2002)
Silbersdorff, A., Lynch, J., Klasen, S., Kneib, T.: Reconsidering the income-health relationship using distributional regression. Health Econ. 27, 1074–1088 (2018)
SOEP: Socio-economic Panel Study (SOEP), data of the years 1984–2013, version 30 (2014). https://doi.org/10.5684/soep.v30
Sriram, K., Ramamoorthi, R., Ghosh, P.: Posterior consistency of bayesian quantile regression based on the misspecified asymmetric laplace density. Bayesian Anal. 8, 479–504 (2013)
Struyf, A.J., Rousseeuw, P.J.: Halfspace depth and regression depth characterize the empirical distribution. J. Multivar. Anal. 69, 135–153 (1999)
Tokdar, S.T., Kadane, J.B.: Simultaneous linear quantile regression: a semiparametric bayesian approach. Bayesian Anal. 6, 1–22 (2011)
Tukey, J.: Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematics (1975)
Waldmann, E., Kneib, T., Yue, Y.R., Lang, S., Flexeder, C.: Bayesian semiparametric additive quantile regression. Stat. Model. 13, 223–252 (2013)
Yang, Y., Tokdar, S.T.: Joint estimation of quantile planes over arbitrary predictor spaces. J. Am. Stat. Assoc. 112, 1107–1120 (2017)
Yu, K., Moyeed, R.: Bayesian quantile regression. Stat Probab Lett 54, 437–447 (2001)
Yu, K., Zhang, J.: A three-parameter asymmetric laplace distribution and its extension. Commun Stat Theory Methods 34, 1867–1879 (2005)
Yu, K., Lu, Z., Stander, J.: Quantile regression: applications and current research areas. J R Stat Soc Ser D (Stat) 53, 331–350 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Santos, B., Kneib, T. Noncrossing structured additive multiple-output Bayesian quantile regression models. Stat Comput 30, 855–869 (2020). https://doi.org/10.1007/s11222-020-09925-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-020-09925-x