Abstract
Selecting between different dependency structures of hidden Markov random field can be very challenging, due to the intractable normalizing constant in the likelihood. We answer this question with approximate Bayesian computation (ABC) which provides a model choice method in the Bayesian paradigm. This comes after the work of Grelaud et al. (Bayesian Anal, 4(2):317–336, 2009) who exhibited sufficient statistics on directly observed Gibbs random fields. But when the random field is latent, the sufficiency falls and we complement the set with geometric summary statistics. The general approach to construct these intuitive statistics relies on a clustering analysis of the sites based on the observed colors and plausible latent graphs. The efficiency of ABC model choice based on these statistics is evaluated via a local error rate which may be of independent interest. As a byproduct we derived an ABC algorithm that adapts the dimension of the summary statistics to the dataset without distorting the model selection.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alfò, M., Nieddu, L., Vicari, D.: A finite mixture model for image segmentation. Stat. Comput. 18(2), 137–150 (2008)
Baragatti, M., Pudlo, P.: An overview on approximate Bayesian computation. ESAIM 44, 291–299 (2014)
Beaumont, M.A., Cornuet, J.-M., Marin, J.-M., Robert, C.P.: Adaptive approximate Bayesian computation. Biometrika 96, 983–990 (2009)
Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with Discussion). J. R. Stat. Soc. Ser. B 36(2), 192–236 (1974)
Besag, J.: Statistical analysis of non-lattice data. Statistician 24, 179–195 (1975)
Biau, G., Cérou, F., Guyader, A.: New insights into Approximate Bayesian Computation. Annales de l’Institut Henri Poincaré (B) Probabilits et Statistiques, in press (2013)
Blum, M.G.B., Nunes, M.A., Prangle, D., Sisson, S.A.: A comparative review of dimension reduction methods in approximate Bayesian computation. Stat. Sci. 28(2), 189–208 (2013)
Caimo, A., Friel, N.: Bayesian inference for exponential random graph models. Soc. Netw. 33(1), 41–55 (2011)
Caimo, A., Friel, N.: Bayesian model selection for exponential random graph models. Soc. Netw. 35(1), 11–24 (2013)
Cucala, L., Marin, J.-M.: Bayesian inference on a mixture model with spatial dependence. J. Comput. Gr. Stat. 22(3), 584–597 (2013)
Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22(5), 1009–1020 (2012)
Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition, Volume 31 of Applications of Mathematics (New York). Springer, New York (1996)
Didelot, X., Everitt, R.G., Johansen, A.M., Lawson, D.J.: Likelihood-free estimation of model evidence. Bayesian Anal. 6(1), 49–76 (2011)
Druilhet, P., Marin, J.-M.: Invariant HPD credible sets and MAP estimators. Bayesian Anal. 2(4), 681–691 (2007)
Estoup, A., Lombaert, E., Marin, J.-M., Robert, C., Guillemaud, T., Pudlo, P., Cornuet, J.-M.: Estimation of demo-genetic model probabilities with approximate Bayesian computation using linear discriminant analysis on summary statistics. Mol. Ecol. Ressour. 12(5), 846–855 (2012)
Everitt, R.G.: Bayesian parameter estimation for latent Markov random fields and social networks. J. Comput. Gr. Stat. 21(4), 940–960 (2012)
Forbes, F., Peyrard, N.: Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1089–1101 (2003)
François, O., Ancelet, S., Guillot, G.: Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174(2), 805–816 (2006)
Friel, N.: Evidence and Bayes factor estimation for Gibbs random fields. J. Comput. Gr. Stat. 22(3), 518–532 (2013)
Friel, N.: Bayesian inference for Gibbs random fields using composite likelihoods. In Proceedings of the 2012 Winter Simulation Conference (WSC), pp. 1–8 (2012)
Friel, N., Rue, H.: Recursive computing and simulation-free inference for general factorizable models. Biometrika 94(3), 661–672 (2007)
Friel, N., Pettitt, A.N., Reeves, R., Wit, E.: Bayesian inference in hidden Markov random fields for binary data defined on large lattices. J. Comput. Gr. Stat. 18(2), 243–261 (2009)
Green, P.J., Richardson, S.: Hidden Markov models and disease mapping. J. Am. Stat. Assoc. 97(460), 1055–1070 (2002)
Grelaud, A., Robert, C.P., Marin, J.-M., Rodolphe, F., Taly, J.-F.: ABC likelihood-free methods for model choice in Gibbs random fields. Bayesian Anal. 4(2), 317–336 (2009)
Hurn, M.A., Husby, O.K., Rue, H.: A Tutorial on Image Analysis. In Spatial Statistics and Computational Methods, volume 173 of Lecture Notes in Statistics pages 87–141. Springer, New York, ISBN 978-0-387-00136-4 (2003)
Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)
Marin, J.-M., Pillai, N.S., Robert, C.P., Rousseau, J.: Relevant statistics for Bayesian model choice. J. R. Stat. Soc. 73(2), 173 (2013)
Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. 100(26), 15324–15328 (2003)
Mira, A., Møller, J., Roberts, G.O.: Perfect slice samplers. J. R. Stat. Soc. 63(3), 593–606 (2001)
Moores, M.T., Hargrave, C.E., Harden, F., Mengersen, K.: Segmentation of cone-beam CT using a hidden Markov random field with informative priors. J. Phys. 489, 012076 (2014)
Moores, M.T., Mengersen, K., Robert, C.P.: Pre-processing for approximate Bayesian computation in image analysis. ArXiv e-prints March (2014)
Prangle, D., Fearnhead, P., Cox, M.P., Biggs, P.J., French, N.P.: Semi-automatic selection of summary statistics for ABC model choice. Stat. Appl. Genet. Mol. Biol. 7, 1–16 (2013)
Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A., Feldman, M.W.: Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16(12), 1791–1798 (1999)
Reeves, R., Pettitt, A.N.: Efficient recursions for general factorisable models. Biometrika 91(3), 751–757 (2004)
Robert, C.P., Cornuet, J.-M., Marin, J.-M., Pillai, N.S.: Lack of confidence in approximate Bayesian computation model choice. Proc. Natl. Acad. Sci. 108(37), 15112–15117 (2011)
Swendsen, R.H., Wang, J.-S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58(2), 86–88 (1987)
Tavaré, S., Balding, D.J., Griffiths, R.C., Donnelly, P.: Inferring coalescence times from DNA sequence data. Genetics 145(2), 505–518 (1997)
Acknowledgments
The three author were financially supported by the Labex NUMEV. We are grateful to Jean-Michel Marin for his constant feedback and support. Some part of the present work was presented at MCMSki 4 in January 2014 and benefited greatly from discussions with the participants during the poster session. We would like to thank Stéphanie Allassonnière and Nathalie Peyrard for fruitful comments and finally the anonymous referrees and the Editors whose valuable comments and insightful suggestions led to an improved version of the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stoehr, J., Pudlo, P. & Cucala, L. Adaptive ABC model choice and geometric summary statistics for hidden Gibbs random fields. Stat Comput 25, 129–141 (2015). https://doi.org/10.1007/s11222-014-9514-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-014-9514-9