The Magnetic Field of the Earth’s Lithosphere | Space Science Reviews Skip to main content
Log in

The Magnetic Field of the Earth’s Lithosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The lithospheric contribution to the Earth’s magnetic field is concealed in magnetic field data that have now been measured over several decades from ground to satellite altitudes. The lithospheric field results from the superposition of induced and remanent magnetisations. It therefore brings an essential constraint on the magnetic properties of rocks of the Earth’s sub-surface that would otherwise be difficult to characterize. Measuring, extracting, interpreting and even defining the magnetic field of the Earth’s lithosphere is however challenging. In this paper, we review the difficulties encountered. We briefly summarize the various contributions to the Earth’s magnetic field that hamper the correct identification of the lithospheric component. Such difficulties could be partially alleviated with the joint analysis of multi-level magnetic field observations, even though one cannot avoid making compromises in building models and maps of the magnetic field of the Earth’s lithosphere at various altitudes. Keeping in mind these compromises is crucial when lithospheric field models are interpreted and correlated with other geophysical information. We illustrate this discussion with recent advances and results that were exploited to infer statistical properties of the Earth’s lithosphere. The lessons learned in measuring and processing Earth’s magnetic field data may prove fruitful in planetary exploration, where magnetism is one of the few remotely accessible internal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Rème, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetisation discovered by the Mars global surveyor MAG/ER experiment. Science 284 (1999). doi:10.1126/science.284.5415.790

  • M.H. Acuña, B.J. Anderson, C.T. Russell, P. Wasilewski, G. Kletetshka, L. Zanetti, N. Omidi, NEAR Magnetic field observations at 433 Eros: first measurements from the surface of an asteroid. Icarus 155 (2002). doi:10.1006/icar.2001.6772

  • O. Aharonson, M.T. Zuber, S.C. Solomon, Crustal remanence in an internally magnetized non-uniform shell: a possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett. 218, 261–268 (2004)

    ADS  Google Scholar 

  • L.R. Alldredge, Rectangular harmonic analysis applied to the geomagnetic field. J. Geophys. Res. 86(B4), 3021–3026 (1981)

    ADS  Google Scholar 

  • J. Arkani-Hamed, The bulk magnetization contrast across the ocean-continent boundary in the east coast of North America. Geophys. J. Int. 115, 152–158 (1993)

    ADS  Google Scholar 

  • G. Backus, Non-uniqueness of the external geomagnetic field determined by surface intensity measurements. J. Geophys. Res. 75, 6337–6341 (1970)

    Google Scholar 

  • G. Backus, R. Parker, C. Constable, Foundations of Geomagnetism (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  • W. Baumjohann, R. Nakamura, Magnetospheric contributions to the terrestrial magnetic field, in Treatise on Geophysics, ed. by M. Kono, vol. 5 (Elsevier, Amsterdam, 2007), pp. 77–91. Chap. 3

    Google Scholar 

  • C. Beggan, F. Simons, Reconstruction of bandwidth-limited data on a sphere using Slepian functions: applications to crustal modelling. International Association of Geomagnetism and Aeronomy. Abstract #0728, 2009

  • A.B. Binder, Lunar prospector: overview. Science 281, 1475–1476 (1998)

    ADS  Google Scholar 

  • R.J. Blakely, T.M. Brocher, R.E. Wells, Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology 33, 445–448 (2005)

    ADS  Google Scholar 

  • J.C. Cain, Pogo (OGO-2, -4 and -6 spacecraft), in Encyclopedia of Geomagnetism and Paleomagnetism, ed. by D. Gubbins, E. Herrero-Bervera (Springer, Dordrecht, 2007), pp. 828–829

    Google Scholar 

  • J.C. Cain, Z. Wang, C. Kluth, D.R. Schmitz, Derivation of a geomagnetic model to n=63. Geophys. J. 97, 431–441 (1989)

    ADS  Google Scholar 

  • A. Chambodut, M. Hamoudi, E. Thébault, V. Lesur, Spectral analysis of the world digital magnetic anomaly map. Abstract#EGU2008-A-09882, EGU, Vienne, 2008

  • M. Chiappini, A. Meloni, E. Boschi, O. Faggioni, N. Beverini, C. Carmisciano, I. Marson, On shore–off shore integrated shaded relief magnetic anomaly map at sea level of Italy and surrounding areas. Ann. Geofis. 43, 983–989 (2000)

    Google Scholar 

  • G.S. Chulick, W.D. Mooney, Seismic structure of the crust and upper most mantle of North American and adjacent oceanic basins: a synthesis. Bull. Seismol. Soc. Am. 92, 2478–2492 (2002)

    Google Scholar 

  • A. Chulliat, E. Thébault, G. Hulot, Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks. Geophys. Res. Lett. 37, L07301 (2010). doi:10.1029/2009GL042019

    Google Scholar 

  • D.A. Clark, P.W. Schmidt, D.A. Coward, M.P. Huddleston, Remote determination of magnetic properties and improved drill targeting of magnetic anomaly sources by differential vector magnetometry. Explor. Geophys. 29, 312–312 (1998)

    Google Scholar 

  • Y. Cohen, Traitements et interprétations de données spatiales en géomagnétisme: étude des variations latérales d’aimantation de la lithosphère terrestre. Thèse de l’Université de Paris, 1989, 95 pp.

  • Y. Cohen, J. Achache, New global vector magnetic anomaly maps derived from Magsat data. J. Geophys. Res. 95(B7), 10783–10800 (1990)

    ADS  Google Scholar 

  • Y. Cohen, J. Achache, Contribution of induced and remanent magnetisation to long-wavelength oceanic magnetic anomalies. J. Geophys. Res. 99, 2943–2954 (1994)

    ADS  Google Scholar 

  • Y. Cohen, M. Menvielle, J.L. Le Mouël, Magnetic measurements aboard a stratospheric balloon. Phys. Earth Planet. Inter. 44, 348–367 (1986)

    ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, G. Kletetschka, D.L. Mitchell, R.P. Lin, H. Rème, Tectonic implications of Mars crustal magnetism. Proc. Natl. Acad. Sci. 102 (2005). doi:10.1073/pnas.0507469102

  • C. Constable, R. Parker, P. Stark, Geomagnetic field models incorporating frozen-flux constraints. Geophys. J. Int. 113, 419–433 (1993)

    ADS  Google Scholar 

  • J. Counil, Y. Cohen, J. Achache, The global continent–ocean magnetisation contrast: spherical harmonic analysis. Earth Planet. Sci. Lett. 103, 354–364 (1991)

    ADS  Google Scholar 

  • V. Courtillot, J. Ducruix, J.L. Le Mouël, Sur une accélération récente de la variation séculaire du champ magnétique terrestre. C.R. Acad. Sci. Paris (D) 287, 1095–1098 (1978)

    Google Scholar 

  • F.J. Crary, F. Bagenal, Remanent ferromagnetism and the interior structure of Ganymede. J. Geophys. Res. 103, 25757–25774 (1998)

    ADS  Google Scholar 

  • C. Demetrescu, V. Dobrica, Recent secular variation of the geomagnetic field. New insights from long series of observatory data. Rev. Roum. Géophys. 49, 63–72 (2005)

    Google Scholar 

  • C. Dumoulin, D. Bercovici, P. Wessel, A continuous plate-tectonic model using geophysical data to estimate plate-margin widths, with a seismicity-based example. Geophys. J. Int. 133, 379–389 (1998)

    ADS  Google Scholar 

  • D.J. Dunlop, O. Özdemir, Magnetisations in rocks and minerals, in Treatise on Geophysics, ed. by M. Kono, vol. 5 (Elsevier, Amsterdam, 2007), pp. 278–331. Chap. 8

    Google Scholar 

  • J. Dyment, J. Arkani-Hamed, Contribution of lithospheric remanent magnetisation to satellite magnetic anomalies over the world’s oceans. J. Geophys. Res. 103, 15423–15441 (1998)

    ADS  Google Scholar 

  • C.C. Finlay, S. Maus, C.D. Beggan, T.N. Bondar, A. Chambodut, T.A. Chernova, A. Chulliat, V.P. Golovkov, B. Hamilton, M. Hamoudi, R. Holme, G. Hulot, W. Kuang, B. Langlais, V. Lesur, F.J. Lowes, H. Luhr, S. Macmillan, M. Mandea, S. McLean, C. Manoj, M. Menvielle, I. Michaelis, N. Olsen, J. Rauberg, M. Rother, T.J. Sabaka, A. Tangborn, L. Tøffner-Clausen, E. Thébault, A.W.T. Thomson, I. Wardinski, Z. Wei, T.I. Zvereva, International geomagnetic reference field: the eleventh generation. Geophys. J. Int. (2010, submitted)

  • C. Fox Maule, M. Purucker, N. Olsen, K. Mosegaard, Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309, 464–467 (2005)

    ADS  Google Scholar 

  • E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 58(4), 351–358 (2006)

    ADS  Google Scholar 

  • C. Gaina, S. Werner (CAMP-GM group), Circum-arctic mapping project: new magnetic and gravity anomaly maps of the Arctic, in 33rd IGC, Oslo, Norway, 2008

  • C.F. Gauss, Allgemeine Theorie des Erdmagnetismus, in Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, ed. by C.F. Gauss, W. Weber (Leipzig, 1839), pp. 1–57

  • N.E. Goldstein, S.H. Ward, The separation of remanent from induced magnetism in situ. Geophysics 31, 779–796 (1966)

    ADS  Google Scholar 

  • A. Hahn, H. Ahrendt, J. Jeyer, J.-H. Hufen, A model of magnetic sources within the earth’s crust compatible with the field measured by the satellite Magsat. Geol. J. A 75, 125–156 (1984)

    Google Scholar 

  • G.V. Haines, Spherical cap harmonic analysis. J. Geophys. Res. 90, 2583–2591 (1985)

    ADS  Google Scholar 

  • M. Hamoudi, E. Thébault, V. Lesur, M. Mandea, GeoForschungsZentrum Anomaly Magnetic Map (GAMMA): a candidate model for the World Digital Magnetic Anomaly Map. Geochem. Geophys. Geosyst. 8, Q06023 (2007). doi:10.1029/2007GC001638

    Google Scholar 

  • R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004)

    ADS  Google Scholar 

  • K. Hemant, S. Maus, A comparison of global lithospheric field models derived from satellite magnetic data, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, ed. by C. Reigber, H. Lühr, P. Schwintzer (Springer, Berlin, 2003), pp. 261–268

    Google Scholar 

  • K. Hemant, S. Maus, Geological modeling of the new CHAMP magnetic anomaly maps using a Geographical Information System (GIS) technique. J. Geophys. Res. B 110, B12103 (2005a). doi:10.1029/2005JB003837

    ADS  Google Scholar 

  • K. Hemant, S. Maus, Why no anomaly is visible over most of the continent-ocean boundary in the global crustal magnetic field. Phys. Earth Planet. Inter. 149, 321–333 (2005b)

    ADS  Google Scholar 

  • K. Hemant, E. Thébault, M. Mandea, D. Ravat, S. Maus, Magnetic anomaly map of the world: merging satellite, airborne, marine and ground-based magnetic data sets. Earth Planet. Sci. Lett. (2007). doi:10.1016/j.epsl.2007.05.040

    Google Scholar 

  • R. Holme, N. Olsen, M. Rother, H. Lühr, CO2: a CHAMP magnetic field model, in First CHAMP Mission results for Gravity, Magnetic and Atmospheric Studies, ed. by C. Reigber, H. Lühr, P. Schwintzer (Springer, Berlin, 2002), pp. 220–225

    Google Scholar 

  • M. Holschneider, A. Chambodut, M. Mandea, From global to regional analysis of themagnetic field on the sphere using wavelet frames. Phys. Earth Planet. Inter. 135(2), 107–124 (2003)

    ADS  Google Scholar 

  • G. Hulot, N. Olsen, T.J. Sabaka, The present field, in Geomagnetism, ed. by M. Kono. Treatise on Geophysics, vol. 5 (Elsevier, Amsterdam, 2007), pp. 33–72. Chap. 6

    Google Scholar 

  • G. Hulot, N. Olsen, E. Thébault, K. Hemant, Crustal concealing of small scale core-field secular variation. Geophys. J. Int. 177, 361–366 (2009). doi:10.1111/j.1365-246X.2009.04119.x

    ADS  Google Scholar 

  • A. Jackson, Accounting for crustal magnetisation in models of the core magnetic field. Geophys. J. Int. 103, 657–673 (1990)

    ADS  Google Scholar 

  • A. Jackson, Statistical treatment of crustal magnetisation. Geophys. J. Int. 119, 991–998 (1994)

    ADS  Google Scholar 

  • A. Jackson, Studies of crustal magnetic anomalies of the British Isles. Astron. Geophys. 48(2), 209–213 (2007)

    Google Scholar 

  • A. Jackson, D. Winch, V. Lesur, Geomagnetic effects of the Earth’s ellipticity. Geophys. J. Int. 138(1), 285–289 (1999)

    ADS  Google Scholar 

  • A. Jackson, A.R.T. Jonkers, M.R. Walker, Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. A 358, 957–990 (2000)

    ADS  Google Scholar 

  • A.R.T. Jonkers, Earth’s Magnetism in the Age of Sail (The Johns Hopkins University Press, Baltimore, 2000). ISBN 0-8018-7132-8. 300 pp.

    Google Scholar 

  • J.K. Khorhonen, J.D. Fairhead, M. Hamoudi, K. Hemant, V. Lesur, M. Mandea, S. Maus, M.E. Purucker, D. Ravat, T. Sazonova, E. Thébault, Magnetic Anomaly Map of the World—Carte des Anomalies Magnétiques du Monde. Scale: 1:50,000,000, 1st edn. (Commission for the Geological Map of the World, 2007)

  • M. Kono, Geomagnetism in perspective, in Geomagnetism, ed. by M. Kono. Treatise on Geophysics, vol. 5 (Elsevier, Amsterdam, 2007), pp. 1–30. Chap. 1

    Google Scholar 

  • M. Korte, E. Thébault, Geomagnetic repeat station crustal biases and vectorial anomaly maps for Germany. Geophys. J. Int. (2007). doi:10.1111/j.1365-246X.2007.03387.x

    Google Scholar 

  • A. Kuvshinov, N. Olsen, A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data. Geophys. Res. Lett. 33 (2006). doi:10.1029/2006GL027083

  • C. Laj, J.E.T. Channel, Geomagnetic excursions, in Geomagnetism, ed. by M. Kono. Treatise on Geophysics, vol. 5 (Elsevier, Amsterdam, 2007), pp. 373–407. Chap. 10

    Google Scholar 

  • R.A. Langel, Main field, in Geomagnetism, ed. by J.A. Jacobs (Academic Press, San Diego, 1987), p. 249

    Google Scholar 

  • R.A. Langel, The use of low altitude satellite data-bases for modeling of core and crustal fields and the separation of external and internal fields. Surv. Geophys. 14(1), 31–87 (1993)

    ADS  Google Scholar 

  • R.A. Langel, R.H. Estes, A geomagnetic field spectrum. Geophys. Res. Lett. 9, 250–253 (1982)

    ADS  Google Scholar 

  • R.A. Langel, W.J. Hinze, The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective (Cambridge University Press, New York, 1998). 429 pp.

    Google Scholar 

  • R.A. Langel, R.H. Estes, G.D. Mead, E.B. Fabiano, E.R. Lancaster, Initial geomagnetic field model from Magsat vector data. Geophys. Res. Lett. 7(10), 793–796 (1980a)

    ADS  Google Scholar 

  • R.A. Langel, R.L. Coles, M.A. Mayhew, Comparisons of magnetic anomalies of lithospheric origin measured by satellite and airborne magnetometers over western Canada. Can. J. Earth Sci. 17, 7 (1980b)

    Google Scholar 

  • R.A. Langel, T.J. Sabaka, R.T. Baldwin, J.A. Conrad, The near-Earth magnetic field from magnetospheric and quietday ionospheric sources and how it is modelled. Phys. Earth Planet. Inter. 98, 235–267 (1996)

    ADS  Google Scholar 

  • B. Langlais, M.E. Purucker, A polar magnetic paleopole associated with Apollinaris Patera. Planet. Space Sci. 55 (2007). doi:10.1016/j.pss.2006.03.008

  • B. Langlais, M. Mandea, P. Ultré-Guérard, High-resolution magnetic field modeling: application to Magsat and Orsted data. Phys. Earth Planet. Inter. 135, 77–91 (2003)

    ADS  Google Scholar 

  • B. Langlais, M. Purucker, M. Mandea, Crustal magnetic field of Mars. J. Geophys. Res. Planets 109(E2), E02008 (2004). doi:10.1029/2003JE002048

    Google Scholar 

  • B. Langlais, V. Lesur, M.E. Purucker, J.E.P. Connerney, M. Mandea, Crustal magnetic field of terrestrial planets. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9557-y. 27 pp.

    Google Scholar 

  • J.L. Le Mouël, Sur la distribution des éléments magnétiques en France. Ph.D. thesis, Univ. de Paris, Paris, 1969

  • F. Leblanc, B. Langlais, T. Fouchet, S. Barabash, D. Breuer, E. Chassefière, A. Coates, V. Dehant, F. Forget, H. Lammer, S. Lewis, M. Lopez-Valverde, M. Mandea, M. Menvielle, A. Pais, M. Paetzold, P. Read, C. Sotin, P. Tarits, S. Vennerstrom, Mars environment and magnetic orbiter: Science and measurement objectives. Astrobiology (2009). doi:10.1089/AST.2007.022

    Google Scholar 

  • V. Lesur, Introducing localized constraints in global geomagnetic field modelling. Earth Planets Space 8(4), 477–483 (2006)

    ADS  Google Scholar 

  • V. Lesur, D. Gubbins, Using geomagnetic secular variation to separate remanent and induced sources of the crustal magnetic field. Geophys. J. Int. 142, 889–897 (2000)

    ADS  Google Scholar 

  • V. Lesur, A. Jackson, Exact solutions for internally induced magnetisation in a shell. Geophys. J. Int. 140(2), 453–459 (2000)

    ADS  Google Scholar 

  • V. Lesur, S. Maus, A global lithospheric magnetic field model with reduced noise level in the polar regions. Geophys. Res. Lett. 33, L13304 (2006). doi:10.1029/2006GL025826

    ADS  Google Scholar 

  • V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM: the GFZ Reference Internal Magnetic Model based on vector satellite and observatory data. Geophys. J. Int. 173(2), 382–394 (2008)

    ADS  Google Scholar 

  • P. Lognonné, D. Giardini, B. Banerdt, J. Gagnepain-Beyneix, A. Mocquet, T. Spohn, J.F. Karczewski, P. Schibler, S. Cacho, W.T. Pike, C. Cavoit, A. Desautez, M. Favède, T. Gabsi, L. Simoulin, N. Striebig, M. Campillo, A. Deschamp, J. Hinderer, J.J. Lévèque, J.P. Montagner, L. Rivéra, W. Benz, D. Breuer, P. Defraigne, V. Dehant, A. Fujimura, H. Mizutani, J. Oberst, The NetLander very broad band seismometer. Planet. Space Sci. 48, 1289–1302 (2000)

    ADS  Google Scholar 

  • F.J. Lowes, Spatial power spectrum of the main geomagnetic field and extrapolation to the core. Geophys. J. R. Astron. Soc. 36, 717–730 (1974)

    Google Scholar 

  • H. Lühr, M. Rother, S. Maus, W. Mai, D. Cooke, The diamagnetic effect of the equatorial appleton anomaly: Its characteristics and impact on geomagnetic field modelling. Geophys. Res. Lett. 30(17), 1906 (2003). doi:10.1029/2003GL017407

    ADS  Google Scholar 

  • S. Macmillan, The International Geomagnetic Reference Field, Encyclopedia of Geomagnetism and Paleomagnetism (2007), p. 411

  • S. MacMillan, T. Chernova, S. Choi, D. Dater, V. Golovkov, V. Lesur, F. Lowes, H. Lhr, W. Mai, S. McLean, N. Olsen, M. Rother, T. Sabaka, A. Thomson, T. Zvereva, The 10th generation International Geomagnetic Reference Field. Phys. Earth Planet. Inter. 151 (2005). doi:10.1016/j.pepi.2005.03.006

  • M. Mandea, B. Langlais, Observatory crustal magnetic biases during Magsat and Ørsted satellite missions. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013693

  • M. Mandea, M.E. Purucker, Observing, modeling, and interpreting magnetic fields of the solid earth. Surv. Geophys. 26 (2005). doi:10.1007/s10712-005-3857-x

  • J. Matzka, A. Chulliat, M. Mandea, C. Finlay, E. Qamili, Direct observations of the geomagnetic field from ground and space. Space Sci. Rev. (2010, submitted)

  • S. Maus, CHAMP, Encyclopedia of Geomagnetism and Paleomagnetism (2007), pp. 59–60

  • S. Maus, The geomagnetic power spectrum. Geophys. J. Int. 174, 135–142 (2008). doi:10.1111/j.1365-246X.2008.03820.x

    ADS  Google Scholar 

  • S. Maus, V. Haak, Is the long wavelength crustal magnetic field dominated by induced or by remanent magnetisation? J. Ind. Geophys. Union 6(1), 1–5 (2002)

    Google Scholar 

  • S. Maus, V. Haak, Magnetic field annihilators: invisible magnetisation at the magnetic equator. Geophys. J. Int. 155, 509–513 (2003)

    ADS  Google Scholar 

  • S. Maus, H. Lühr, A gravity-driven electric current in the earth’s ionosphere identified in champ satellite magnetic measurements. Geophys. Res. Lett. 33, L02812 (2006). doi:10.1029/2005GL024436

    Google Scholar 

  • S. Maus, P. Weidelt, Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the Earth. Geophys. Res. Lett. 31, L12614 (2004). doi:10.1029/2004GL020232

    ADS  Google Scholar 

  • S. Maus, M. Rother, R. Holme, H. Lühr, N. Olsen, V. Haak, First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field. Geophys. Res. Lett. 29(14), 1702 (2002). doi:10.1029/2001GL013685

    ADS  Google Scholar 

  • S. Maus, H. Lühr, G. Balasis, M. Rother, M. Mandea, Introducing POMME the Potsdam Magnetic Model of the Earth, in Earth Observation with CHAMP: Results from Three Years in Orbit, ed. by C. Reigber, H. Lühr, P. Schwintzer, J. Wickert (Springer, Berlin, 2005), pp. 293–298

    Google Scholar 

  • S. Maus, H. Lühr, M. Rother, K. Hemant, G. Balasis, P. Ritter, C. Stolle, Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements. Geochem. Geophys. Geosyst. 8, Q05013 (2007a). doi:10.1029/2006GC001521

    Google Scholar 

  • S. Maus, T. Sazonova, K. Hemant, J.D. Fairhead, D. Ravat, National Geophysical Data Center candidate for the World Digital Magnetic Anomaly Map. Geochem. Geophys. Geosyst. 8, Q06017 (2007b). doi:10.1029/2007GC001643

    Google Scholar 

  • S. Maus, F. Yin, H. Lühr, C. Manoj, M. Rother, J. Rauberg, I. Michaelis, C. Stolle, R.D. Müller, Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochem. Geophys. Geosyst. 9, Q07021 (2008). doi:10.1029/2008GC001949

    Google Scholar 

  • S. Maus, U. Barckhausen, H. Berkenbosch, N. Bournas, J. Brozena, V. Childers, F. Dostaler, J.D. Fairhead, C. Finn, R.R.B. von Frese, C. Gaina, S. Golynsky, R. Kucks, H. Lühr, P. Milligan, S. Mogren, R.D. Müller, O. Olesen, M. Pilkington, R. Saltus, B. Schreckenberger, E. Thébault, F. Caratori Tontini, EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochem. Geophys. Geosyst. 10, Q08005 (2009). doi:10.1029/2009GC002471

    Google Scholar 

  • P.N. Mayaud, Geophysical Monograph 22: Derivation, Meaning, and Use of Geomagnetic Indices (American Geophysical Union, Washington, 1980)

    Google Scholar 

  • C. Mayer, T. Maier, Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J. Int. 167, 1188–1203 (2006)

    ADS  Google Scholar 

  • M.A. Mayhew, Inversion of satellite magnetic anomaly data. J. Geophys. 45, 119–128 (1979)

    Google Scholar 

  • M.G. McLeod, Spatial and temporal power spectra of the geomagnetic field. J. Geophys. Res. 101, 2745–2763 (1996)

    ADS  Google Scholar 

  • J. Meyer, J.-H. Hufen, M. Siebert, A. Hahn, Investigations of the internal geomagnetic field by means of a global model of the earth’s crust. J. Geophys. 52, 71–84 (1983)

    Google Scholar 

  • W.D. Mooney, Crust and lithosphere—global crustal structure, in Seismology and the Structure of the Earth, ed. by M. Kono. Treatise on Geophysics, vol. 1 (Elsevier, Amsterdam, 2007), pp. 361–399. Chap. 11

    Google Scholar 

  • R.D. Müller, W.R. Roest, J.-Y. Royer, L.M. Gahagan, J.G. Sclater, Digital isochrons of the world’s ocean floor. J. Geophys. Res. 102, 325–338 (1997)

    Google Scholar 

  • R.D. Müller, M. Sdrolias, C. Gaina, W.R. Roest, Age, spreading rates and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008). doi:10.1029/2007GC001743

    Google Scholar 

  • M.N. Nabighian, V.J.S. Grauch, R.O. Hansen T.R. LaFehr, Y. Li, J.W. Peirce, J.D. Phillips, M.E. Ruder, The historical development of the magnetic method in exploration. Geophysics 70, 33–61 (2005)

    ADS  Google Scholar 

  • H.-C. Nataf, Y. Ricard, 3SMAC: An a priori tomographic model of the upper mantle based on geophysical modeling. Phys. Earth Planet. Inter. 95, 101–122 (1996)

    ADS  Google Scholar 

  • N.F. Ness, Space exploration of planetary magnetism. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9567-9

    Google Scholar 

  • T. Neubert, M. Mandea, G. Hulot, R. von Frese, F. Primdahl, J.L. Jørgensen, E. Friis-Christensen, P. Stauning, N. Olsen, T. Risbo, Ørsted satellite captures high-precision geomagnetic field data. EOS 82(7), 81–88 (2001)

    ADS  Google Scholar 

  • H.J. Nolte, M. Siebert, An analytical approach to the magnetic field of the Earth’s crust. J. Geophys. 61, 69–76 (1987)

    Google Scholar 

  • N. Olsen, Ørsted, Encyclopedia of Geomagnetism and Paleomagnetism (2007), pp. 743–746

  • N. Olsen, R. Holme, G. Hulot, T. Sabaka, T. Neubert, L. Toffner-Clausen, F. Primdahl, J. Jorgensen, J.-M. Leger, D. Barraclough, J. Bloxham, J. Cain, C. Constable, V. Golovkov, A. Jackson, P. Kotze, B. Langlais, S. Macmillan, M. Mandea, J. Merayo, L. Newitt, M. Purucker, T. Risbo, M. Stampe, A. Thomson, C. Voorhies, Ørsted initial field model. Geophys. Res. Lett. 27(22), 3607–3610 (2000)

    ADS  Google Scholar 

  • N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Tøffner-Clausen, S. Choi, CHAOS—a model of Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006). doi:10.1111/j.1365-246X.2006.02959.x

    ADS  Google Scholar 

  • N. Olsen, M. Mandea, T.J. Sabaka, L. Tøffner-Clausen, CHAOS-2: a geomagnetic field model derived from one decade of continuous satellite data. Geophys. J. Int. 179(3), 1477–1487 (2009a). doi:10.1111/j.1365-246X.2009.04386.x

    ADS  Google Scholar 

  • N. Olsen, K.-H. Glassmeier, X. Jia, Separation of the magnetic field into external and internal parts. Space Sci. Rev. (2009b). doi:10.1007/s11214-009-9563-0

    Google Scholar 

  • N. Olsen, E. Friis-Christensen, G. Hulot, M. Korte, A. Kuvshinov, V. Lesur, H. Lühr, S. Macmillan, M. Mandea, S. Maus, M. Purucker, C. Reigber, P. Ritter, M. Rother, T. Sabaka, P. Tarits, A. Thomson, Swarm end-to-end mission performance simulator study. DSRI Report 1/2004, ISSN 1602-527X, 2004

  • R.L. Parker, Ideal bodies for Mars magnetics. J. Geophys. Res. 108, E15006 (2003). doi:10.1029/2001JE001760

    ADS  Google Scholar 

  • T. Parsons, J. McCarthy, W.M. Kohler, C.J. Ammon, H.M. Benz, J.A. Hole, E.E. Criley, Crustal structure of the Colorado Plateau, Arizona: application of new long-offset seismic data analysis techniques. J. Geophys. Res. 101(B5), 11173–11194 (1996)

    ADS  Google Scholar 

  • M. Pilkington, Aeromagnetic surveying, in Encyclopedia of Geomagnetism and Paleomagnetism, ed. by D. Gubbins, E. Herrero-Bervera (Springer, Dordrecht, 2007), pp. 1–3

    Google Scholar 

  • M. Purucker, Magsat, in Encyclopedia of Geomagnetism and Paleomagnetism, ed. by D. Gubbins, E. Herrero-Bervera (Springer, Dordrecht, 2007), p. 673

    Google Scholar 

  • M. Purucker, A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations. Icarus 197, 19–23 (2008)

    ADS  Google Scholar 

  • M. Purucker, T. Ishihara, Magnetic images of the Sumatran region crust, EOS. Trans. Am. Geophys. Union 86(10), 101–102 (2005)

    ADS  Google Scholar 

  • M. Purucker, W. Whaler, Crustal magnetism, in Geomagnetism, ed. by M. Kono. Treatise on Geophysics, vol. 5 (Elsevier, Amsterdam, 2007), pp. 195–237. Chap. 6

    Google Scholar 

  • M. Purucker, T.J. Sabaka, R. Langel, N. Olsen, The missing dimension in Magsat and POGO anomaly studies. Geophys. Res. Lett. 24, 2909–2912 (1997)

    ADS  Google Scholar 

  • M. Purucker, R. Langel, M. Rajaram, C. Raymond, Global magnetization models with a priori information. J. Geophys. Res. 103, 2563–2584 (1998)

    ADS  Google Scholar 

  • M. Purucker, B. Langlais, N. Olsen, G. Hulot, M. Mandea, The southern edge of cratonic North America: evidence from new satellite magnetometer observations. Geophys. Res. Lett. 29(15), 8000 (2002). doi:10.1029/2001GL013645

    ADS  Google Scholar 

  • M. Purucker, T.J. Sabaka, G. Le, J.A. Slavin, R.J. Strangeway, C. Busby, Magnetic field gradients from the ST-5 constellation: improving magnetic and thermal models of the lithosphere. Geophys. Res. Lett. 34, L24306 (2007). doi:10.1029/2007GL031739

    ADS  Google Scholar 

  • M. Purucker, T.J. Sabaka, S.C. Solomon, B.J. Anderson, H. Korth, M.T. Zuber, G.A. Neumann, Mercury’s internal magnetic field: Constraints on large- and small-scale fields of crustal origin. Earth Planet. Sci. Lett. 285, 340–346 (2009). doi:10.1016/j.epsl.2008.12.017

    ADS  Google Scholar 

  • Y. Quesnel, M. Catalan, T. Ishihara, A new global marine magnetic anomaly data set. J. Geophys. Res. 114, B04106 (2009). doi:10.1029/2008JB006144

    Google Scholar 

  • D. Ravat, R.A. Langel, M. Purucker, J. Arkani-Hamed, D.E. Alsdorf, Global vector and scalar Magsat magnetic anomaly maps. J. Geophys. Res. 100(B10), 20111–20136 (1995)

    ADS  Google Scholar 

  • D. Ravat, K. Whaler, M. Pilkington, T. Sabaka, M. Purucker, Compatibility of high-altitude aeromagnetic and satellite altitude magnetic anomalies over Canada. Geophysics 67, 546–554 (2002)

    ADS  Google Scholar 

  • D. Ravat, T.G. Hildenbrand, W. Roest, New way of forecasting near-surface magnetic data: the utility of the comprehensive model of the magnetic field. Lead. Edge 22, 784–785 (2003)

    Google Scholar 

  • D. Ravat, C. Finn, P. Hill, R. Kucks, J. Phillips, R. Blakely, C. Bouligand, T. Sabaka, A. Elshayat, A. Aref, E. Elawadi, A preliminary, full spectrum, magnetic anomaly grid of the United States with improved long wavelengths for studying continental dynamics–a website for distribution of data. U.S. Geological Survey Open-File Report 2009-1258 (2009), 2 p.

  • C. Reeves, Aeromagnetic Surveys: Principles, Practice and Interpretation (GeoSoft, 2005), p. 155

  • C.V. Reeves, M. De Wit, Making ends meet in Gondwana: retracing the transforms of the Indian Ocean and reconnecting continental shear zones. Terra Nova 12, 272–280 (2000). doi:10.1046/j.1365-3121.2000.00309.x

    Google Scholar 

  • R.D. Regan, J.C. Cain, W.M. Davis, Global magnetic anomaly map. J. Geophys. Res. 80, 794–802 (1975)

    ADS  Google Scholar 

  • C. Reigber, H. Lühr, S.T. Champ, Mission status. Adv. Space Res. 30 (2002). doi:10.1016/S0273-1177(02)00276-4

  • I. Richter, D.E. Brinza, M. Cassel, K.H. Glassmeier, F. Kuhnke, G. Musmann, C. Othmer, K. Schwingenschuh, B.T. Tsurutani, First direct magnetic field measurements of an asteroidal magnetic field: DS1 at Braille. Geophys. Res. Lett. 28 (2001). doi:10.1029/2000GL012679

  • S.K. Runcorn, On the interpretation of lunar magnetism. Phys. Earth Planet. Inter. 10, 327–335 (1975)

    ADS  Google Scholar 

  • T.J. Sabaka, R.T. Baldwin, Modeling the Sq magnetic field from POGO and Magsat satellite and contemporaneous hourly observatory data: phase I. Contract Report HSTX/ G&G9302, 1993

  • T.J. Sabaka, N. Olsen, Enhancing comprehensive inversions using the Swarm constellation. Earth Planets Space 58, 371–395 (2006)

    ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, R.A. Langel, A comprehensive model of the quiet-time near-Earth magnetic field: phase 3. Geophys. J. Int. 151, 32–68 (2002)

    ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 159, 521–547 (2004). doi:10.1111/j.1365-246X.2004.02421.x

    ADS  Google Scholar 

  • C.C. Schnetzler, P.T. Taylor, R.A. Langel, W.J. Hinze, J.D. Phillips, Comparison between the recent US composite magnetic anomaly map and Magsat anomaly data. J. Geophys. Res. 90, 2543–2548 (1985)

    ADS  Google Scholar 

  • J.J. Schott, E. Thébault, Modelling the earth’s magnetic field from global to regional scales, in Geomagnetic Observations and Models. IAGA Special Sopron Book Series (2010, in press)

  • L. Shure, R.L. Parker, G.E. Backus, Harmonic splines for geomagnetic modelling. Phys. Earth Planet. Inter. 28, 215–229 (1982)

    ADS  Google Scholar 

  • M. Siebert, J. Meyer, Geomagnetic activity indices, in The Upper Atmosphere, ed. by W. Dieminger, G.K. Hartman, R. Leitinger (Springer, Berlin, 1996), pp. 887–911

    Google Scholar 

  • F.J. Simons, F.A. Dahlen, A spatiospectral localization approach to estimating potential fields on the surface of a sphere from noisy, incomplete data taken at satellite altitudes. Proc. SPIE 6701, 670117 (2007). doi:10.1117/12.732406

    Google Scholar 

  • E.J. Smith, L.J. Davis, P.J. Coleman Jr., D.E. Jones, Magnetic field measurements near Mars. Science 149, 1241–1242 (1965)

    ADS  Google Scholar 

  • I. Socias, J. Mezcua, J. Lynam, R. Del Potro, Interpretation of an aeromagnetic survey of the Spanish mainland. Earth Planet. Sci. Lett. 105(1–3), 55–64 (1991)

    ADS  Google Scholar 

  • R. Stockman, C.C. Finlay, A. Jackson, Imaging Earth’s crustal magnetic field with satellite data: a regularized spherical triangle tessellation approach. Geophys. J. Int. 179, 929–944 (2009). doi:10.1111/j.1365-246X.2009.04345.x

    ADS  Google Scholar 

  • C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread F, as observed by the CHAMP satellite. J. Geophys. Res. 111, A02304 (2006). doi:10.1029/2005JA011184

    Google Scholar 

  • C. Tarlowski, A.J. McEwm, C.V. Reeves, C.E. Barton, Dewarping the composite aeromagnetic anomaly map of Australia using control traverses and base stations. Geophysics 61, 696–705 (1996)

    ADS  Google Scholar 

  • W.M. Telford, L.P. Geldart, R.E. Sheriff, Applied Geophysics, 2nd edn. (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  • E. Thébault, Global lithospheric magnetic field modeling by successive regional analysis. Earth Planets Space 58, 485–495 (2006)

    ADS  Google Scholar 

  • E. Thébault, Modeling the lithospheric magnetic field combining sequential data filtering and local basis functions. IUGG, Abstract: Perugia, 2007

  • E. Thébault, A proposal for regional modelling at the Earth’s surface, R-SCHA2D. Geophys. J. Int. 174 (2008). doi:10.1111/j.1365-246X.2008.03823.x

  • E. Thébault, L.R. Gaya-Piqué, Applied comparisons between SCHA and R-SCHA regional modelling techniques. Geochem. Geophys. Geosyst. 9 (2008). doi:10.1029/2008GC001953

  • E. Thébault, J.J. Schott, M. Mandea, J.P. Hoffbeck, A new proposal for spherical cap harmonic analysis. Geophys. J. Int. 159, 83–105 (2004)

    ADS  Google Scholar 

  • E. Thébault, J.J. Schott, M. Mandea, Revised spherical cap harmonic analysis (R-SCHA): validation and properties. J. Geophys. Res. 111 (2006a). doi:10.1029/2005JB003836

  • E. Thébault, J.J. Schott, M. Mandea, Modelling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA). J. Geophys. Res. 111 (2006b). doi:10.1029/2005JB004110

  • E. Thébault, K. Hemant, G. Hulot, N. Olsen, On the geographical distribution of induced time varying crustal magnetic fields. Geophys. Res. Lett. 36 (2009). doi:10.1029/2008GL036416

  • M.A. Tivey, Magnetic surveys, marine, in Encyclopedia of Geomagnetism and Paleomagnetism, ed. by D. Gubbins, E. Herrero-Bervera (Springer, Dordrecht, 2007), pp. 542–546

    Google Scholar 

  • J.M. Torta, L.R. Gaya-Piqué, A. De Santis, Spherical cap harmonic analysis of the geomagnetic field with application for aeronautical mapping, in Geomagnetics for Aeronautical Safety: A Case Study in and around the Balkans, ed. by J.L. Rasson, T. Delipetrov (Springer, Dordrecht, 2006), pp. 291–307

    Google Scholar 

  • G.M. Turner, J.L. Rasson, C. Reeves, Observation and measurement techniques, in Geomagnetism, ed. by M. Kono. Treatise on Geophysics, vol. 5 (Elsevier, Amsterdam, 2007), pp. 94–143. Chap. 4

    Google Scholar 

  • R. Tyler, S. Maus, H. Lühr, Satellite observations of magnetic fields due to ocean tidal flow. Science 299, 239–241 (2003)

    ADS  Google Scholar 

  • J.R. Verhoef, R. Macnab, W. Roest, J. Arkani-Hamed, Magnetic anomalies of the Arctic and North Atlantic oceans and adjacent land areas. Open File 3125a, Geol. Surv. of Can., Ontario, Canada, 1996

  • F.J. Vine, D.H. Matthew, Magnetic anomalies over oceanic ridges. Nature 199, 947–949 (1963)

    ADS  Google Scholar 

  • R.R.B. von Frese, A.V. Golynsky, H.R. Kim, L. Gaya-Piqué, E. Thébault, M. Chiappini, M. Ghidella, A. Grunow (the ADMAP Working Group), The next generation Antarctic digital magnetic anomaly map. U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 093 (2007). doi:10.3133/of2007-1047.srp093

  • C.V. Voorhies, T.J. Sabaka, M. Purucker, On magnetic spectra of Earth and Mars. J. Geophys. Res. 107(E6), 5034 (2002). doi:10.1029/2001JE001534

    Google Scholar 

  • P.J. Wasilewski, M.A. Mayhew, The Moho as a magnetic boundary revisited. Geophys. Res. Lett. 19(22), 2259–2262 (1992)

    ADS  Google Scholar 

  • K.A. Whaler, R.A. Langel, Minimal crustal magnetisations from satellite data. Phys. Earth Planet. Inter. 48, 303–319 (1996)

    ADS  Google Scholar 

  • K. Whaler, M. Purucker, A spatially continuous magnetisation model for Mars. J. Geophys. Res. E09001 (2005). doi:10.1029/2004JE002393

  • T. Wonik, K. Trippler, H. Geipel, S. Greinwald, I. Pashkevitch, Magnetic anomaly map for Northern, Western, and Eastern Europe. Terra Nova 13(3), 203–213 (2001). doi:10.1046/j.1365-3121.2001.00341.x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Thébault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thébault, E., Purucker, M., Whaler, K.A. et al. The Magnetic Field of the Earth’s Lithosphere. Space Sci Rev 155, 95–127 (2010). https://doi.org/10.1007/s11214-010-9667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9667-6

Keywords

Navigation