The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience | Scientometrics Skip to main content
Log in

The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Patent and scientific literature are the fundamental sources of innovation in knowledge creation and transfer activities. Establishing and understanding the complex relationships between them can help scientists and stakeholders to predict and promote the innovation process. In this paper, we consider the domain of nanoscience, using a large scale collection of patents and scientific literature to find evolution patterns and distinctive keywords of each topic in a particular period. By extracting the semantic-level topics from a dataset of nearly 810,000 scientific literature from Web of Science and 160,000 patents from Derwent, the results reveal that the degree of topic popularity for both innovative platforms shows a totally different situation during the last 20 years from 1995 to 2015. In addition, the top keywords of patents and scientific literature, representing the topic content of concern, have changed respectively as time went on. Not only our analysis can be used for confirming existing topics in nanoscience, but it also gives new views on the relationship between scientific literature and patents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bassecoulard, E., & Zitt, M. (2004). Patents and publications. In Handbook of quantitative science and technology research (pp. 665–694). Netherlands: Springer.

  • Bhattacharya, S., Kretschmer, H., & Meyer, M. (2003). Characterizing intellectual spaces between science and technology. Scientometrics, 58(2), 369–390.

    Article  Google Scholar 

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Branstetter, L., & Ogura, Y. (2005). Is academic science driving a surge in industrial innovation? Evidence from patent citations (No. w11561). National Bureau of Economic Research.

  • Caraça, J., Lundvall, B. Å., & Mendonça, S. (2009). The changing role of science in the innovation process: From Queen to Cinderella? Technological Forecasting and Social Change, 76(6), 861–867.

    Article  Google Scholar 

  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. London: Routledge.

    Google Scholar 

  • Di Stefano, G., Gambardella, A., & Verona, G. (2012). Technology push and demand pull perspectives in innovation studies: Current findings and future research directions. Research Policy, 41(8), 1283–1295.

    Article  Google Scholar 

  • Dobson, J. (2006). Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Therapy, 13(4), 283.

    Article  MathSciNet  Google Scholar 

  • Gibbons, M., & Johnston, R. (1974). The roles of science in technological innovation. Research Policy, 3(3), 220–242.

    Article  Google Scholar 

  • Glänzel, W., & Meyer, M. (2003). Patents cited in the scientific literature: An exploratory study of ‘reverse’ citation relations. Scientometrics, 58(2), 415–428.

    Article  Google Scholar 

  • Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl 1(1)), 5228–5235.

    Article  Google Scholar 

  • Guan, J., & Zhao, Q. (2013). The impact of university–industry collaboration networks on innovation in nanobiopharmaceuticals. Technological Forecasting & Social Change, 80(7), 1271–1286.

    Article  Google Scholar 

  • Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500.

    Article  Google Scholar 

  • Hassan, M. H. (2005). Small things and big changes in the developing world. Science, 309(5731), 65–66.

    Article  Google Scholar 

  • Hsu, C.-W., Lien, Y.-C., & Chen, H. (2015). R&D internationalization and innovation performance. International Business Review, 24(2), 187–195.

    Article  Google Scholar 

  • Hu, D., Chen, H., Huang, Z., & Roco, M. C. (2007). Longitudinal study on patent citations to academic research articles in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9(4), 529–542.

    Article  Google Scholar 

  • Hu, B., Dong, X., Zhang, C., Bowman, T. D., Ding, Y., Milojević, S., et al. (2015). A lead–lag analysis of the topic evolution patterns for preprints and publications. Journal of the Association for Information Science and Technology, 66(12), 2643–2656.

    Article  Google Scholar 

  • Huang, C., Notten, A., & Rasters, N. (2011). Nanoscience and technology publications and patents: A review of social science studies and search strategies. The Journal of Technology Transfer, 36(2), 145–172.

    Article  Google Scholar 

  • Huang, M.-H., Yang, H.-W., & Chen, D.-Z. (2015). Industry–academia collaboration in fuel cells: A perspective from paper and patent analysis. Scientometrics, 105(2), 1301–1318.

    Article  Google Scholar 

  • Hullmann, A. (2008). European activities in the field of ethical, legal and social aspects (ELSA) and governance of nanotechnology (p. 1). Brussels: European Commission.

    Google Scholar 

  • Hullmann, A., & Meyer, M. (2003). Publications and patents in nanotechnology. Scientometrics, 58(3), 507–527.

    Article  Google Scholar 

  • Igami, M., & Okazaki, T. (2007). Capturing nanotechnology’s current state of development via analysis of patents. OECD science, technology and industry working papers.

  • Kostoff, R. N., Koytcheff, R. G., & Lau, C. G. Y. (2007). Technical structure of the global nanoscience and nanotechnology literature. Journal of Nanoparticle Research, 9(5), 701–724.

    Article  Google Scholar 

  • Li, R., Chambers, T., Ding, Y., Zhang, G., & Meng, L. (2014). Patent citation analysis: Calculating science linkage based on citing motivation. Journal of the Association for Information Science and Technology, 65(5), 1007–1017.

    Article  Google Scholar 

  • Li, X., Hu, D., Dang, Y., Chen, H., Roco, M. C., Larson, C. A., et al. (2009). Nano mapper: An Internet knowledge mapping system for nanotechnology development. Journal of Nanoparticle Research, 11(3), 529–552.

    Article  Google Scholar 

  • Li, X., Lin, Y., Chen, H., & Roco, M. C. (2007). Worldwide nanotechnology development: A comparative study of USPTO, EPO, and JPO patents (1976–2004). Journal of Nanoparticle Research, 9(6), 977–1002.

    Article  Google Scholar 

  • Logothetidis, S. (Ed.). (2012). Nanostructured materials and their applications. New York: Springer.

    Google Scholar 

  • Maine, E., Thomas, V. J., Bliemel, M., Murira, A., & Utterback, J. (2014). The emergence of the nanobiotechnology industry. Nature Nanotechnology, 9(1), 2–5.

    Article  Google Scholar 

  • Makri, M., Hitt, M. A., & Lane, P. J. (2010). Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions. Strategic Management Journal, 31(6), 602–628.

    Google Scholar 

  • Mansfield, E. (1991). Academic research and industrial innovation. Research Policy, 20(1), 1–12.

    Article  Google Scholar 

  • McINTYRE, R. A. (2012). Common nano-materials and their use in real world applications. Science Progress, 95(1), 1–22.

    Article  Google Scholar 

  • Mei, Q., & Zhai, C. (2005, August). Discovering evolutionary theme patterns from text: An exploration of temporal text mining. In Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining (pp. 198–207). ACM.

  • Meyer, M. (2000a). Does science push technology? Patents citing scientific literature. Research Policy, 29(3), 409–434.

    Article  Google Scholar 

  • Meyer, M. (2000b). What is special about patent citations? Differences between scientific and patent citations. Scientometrics, 49(1), 93–123.

    Article  Google Scholar 

  • Meyer, M. (2002). Tracing knowledge flows in innovation systems. Scientometrics, 54(2), 193–212.

    Article  Google Scholar 

  • Meyer, M. (2006). Knowledge integrators or weak links? an exploratory comparison of patenting researchers with their non-inventing peers in nano-science and technology. Scientometrics, 68(3), 545–560.

    Article  Google Scholar 

  • Nallapati, R., Shi, X., McFarland, D. A., Leskovec, J., & Jurafsky, D. (2011, July). LeadLag LDA: Estimating topic specific leads and lags of information outlets. In ICWSM.

  • Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research Policy, 26(3), 317–330.

    Article  Google Scholar 

  • National Research Council. (2012). Rising to the challenge: US innovation policy for the global economy. Washington DC: National Academies Press.

    Google Scholar 

  • Nemet, G. F. (2009). Demand-pull, technology-push, and government-led incentives for non-incremental technical change. Research Policy, 38(5), 700–709.

    Article  Google Scholar 

  • Nightingale, P. (1998). A cognitive model of innovation. Research policy, 27(7), 689–709.

    Article  Google Scholar 

  • Ozcan, S., & Islam, N. (2017). Patent information retrieval: Approaching a method and analysing nanotechnology patent collaborations. Scientometrics, 111(2), 1–30.

    Article  Google Scholar 

  • Ozin, G. A., & Cademartiri, L. (2009). Nanochemistry: What is next? Small (Weinheim an der Bergstrasse, Germany), 5(11), 1240–1244.

    Article  Google Scholar 

  • Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55(3), 329–347.

    Article  Google Scholar 

  • Paull, R., Wolfe, J., Hébert, P., & Sinkula, M. (2003). Investing in nanotechnology. Nature Biotechnology, 21(10), 1144–1147.

    Article  Google Scholar 

  • Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.

    Article  Google Scholar 

  • Řehůřek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. In Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks (pp. 45–50).

  • Rip, A. (1992). Science and technology as dancing partners. In Technological development and science in the industrial age (pp. 231–270). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Roco, M. C., & Bainbridge, W. S. (2005). Societal implications of nanoscience and nanotechnology: Maximizing human benefit. Journal of Nanoparticle Research, 7(1), 1–13.

    Article  Google Scholar 

  • Roco, M. C., Mirkin, C. A., & Hersam, M. C. (2011). Nanotechnology research directions for societal needs in 2020: Summary of international study. Journal of Nanoparticle Research, 13(3), 897–919.

    Article  Google Scholar 

  • Sampat, B. N., & Ziedonis, A. A. (2004). Patent citations and the economic value of patents. In Handbook of quantitative science and technology research (pp. 277–298). Netherlands: Springer.

  • Selin, C. (2007). Expectations and the emergence of nanotechnology. Science, Technology and Human Values, 32(2), 196–220.

    Article  Google Scholar 

  • Shaparenko, B., Caruana, R., Gehrke, J., & Joachims, T. (2005). Identifying temporal patterns and key players in document collections. In Proceedings of the IEEE ICDM workshop on temporal data mining: Algorithms, theory and applications (TDM-05) (pp. 165–174).

  • Shi, X., Nallapati, R., Leskovec, J., McFarland, D., & Jurafsky, D. (2010). Who leads whom: Topical lead–lag analysis across corpora. In NIPS workshop.

  • Stevens, S. Y., Sutherland, L. M., & Krajcik, J. S. (2009). The big ideas of nanoscale science and engineering. NSTA press.

  • Swan, R., & Jensen, D. (2000, August). Timemines: Constructing timelines with statistical models of word usage. In KDD-2000 workshop on text mining (pp. 73–80).

  • Tanaka, M. (2013). Toward a proposed ontology for nanoscience. In Proceedings of the Annual Conference of CAIS/Actes du congrès annuel de l'ACSI, October.

  • Tussen, R., Buter, R., & Van Leeuwen, T. (2000). Technological relevance of science: An assessment of citation linkages between patents and research papers. Scientometrics, 47(2), 389–412.

    Article  Google Scholar 

  • Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54(3), 399–420.

    Article  Google Scholar 

  • Wohlleben, W., Kuhlbusch, T. A., Schnekenburger, J., & Lehr, C. M. (Eds.). (2014). Safety of nanomaterials along their lifecycle: Release, exposure, and human hazards. Boca Raton: CRC Press.

    Google Scholar 

  • Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., et al. (2015). Safety of nanoparticles in medicine. Current Drug Targets, 16(14), 1671–1681.

    Article  Google Scholar 

  • Zhang, G., Feng, Y., Yu, G., Liu, L., & Hao, Y. (2017). Analyzing the time delay between scientific research and technology patents based on the citation distribution model. Scientometrics, 111, 1–20.

    Article  Google Scholar 

  • Zitt, M., & Bassecoulard, E. (2006). Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences. Information Processing & Management, 42(6), 1513–1531.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by Major Projects of National Social Science Foundation of China (No. 14ZDA063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujia Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Zhu, N., Zhai, Y. et al. The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience. Scientometrics 115, 893–911 (2018). https://doi.org/10.1007/s11192-018-2693-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-018-2693-y

Keywords

Mathematics Subject Classification

JEL Classification

Navigation