Abstract
Technologies play an important role in the survival and development of enterprises. Understanding and monitoring the core technological components (e.g., technology process, operation method, function) of a technology is an important issue for researchers to develop R&D policy and manage product competitiveness. However, it is difficult to identify core technological components from a mass of terms, and we may experience some difficulties with describing complete technical details and understanding the terms-based results. This paper proposes a Subject-Action-Object (SAO)-based method, in which (1) a syntax-based approach is constructed to extract the SAO structures describing the function, relationship and operation in specified topics; (2) a systematic method is built to extract and screen technological components from SAOs; and (3) we propose a “relevance indicator” to calculate the relevance of the technological components to requirements, and finally identify core technological components based on this indicator. Based on the considerations for requirements and novelty, the core technological components identified have great market potential and can be useful in monitoring and forecasting new technologies. An empirical study of graphene is performed to demonstrate the proposed method. The resulting knowledge may hold interest for R&D management and corporate technology strategies in practice.








Similar content being viewed by others
References
Abercrombie, R. K., Udoeyop, A. W., & Schlicher, B. G. (2012). A study of scientometric methods to identify emerging technologies via modeling of milestones. Scientometrics, 91(2), 327–342. doi:10.1007/s11192-011-0614-4.
Bengisu, M. (2003). Critical and emerging technologies in Materials, Manufacturing, and Industrial Engineering: A study for priority setting. Scientometrics, 58(3), 473–487. doi:10.1023/B:SCIE.0000006875.61813.f6.
Bergmann, I., Butzke, D., Walter, L., Fuerste, J. P., Moehrle, M. G., & Erdmann, V. A. (2008). Evaluating the risk of patent infringement by means of semantic patent analysis: the case of DNA chips. R&D Management, 38(5), 550–562. doi:10.1111/j.1467-9310.2008.00533.x.
Boon, W., & Moors, E. (2008). Exploring emerging technologies using metaphors—A study of orphan drugs and pharmacogenomics. Social Science and Medicine, 66(9), 1915–1927. doi:10.1016/j.socscimed.2008.01.012.
Carrillo, M., & González, J. M. (2002). A new approach to modelling sigmoidal curves. Technological Forecasting and Social Change, 69(3), 233–241. doi:10.1016/S0040-1625(01)00150-0.
Cascini, G., Fantechi, A., & Spinicci, E. (2004). Natural language processing of patents and technical documentation. In S. Marinai, & A. Dengel (Eds.), Document Analysis Systems VI (Vol. 3163, pp. 508–520, Lecture Notes in Computer Science). Berlin: Springer Berlin Heidelberg.
Cho, T. S., & Shih, H. Y. (2011). Patent citation network analysis of core and emerging technologies in Taiwan: 1997-2008. Scientometrics, 89(3), 795–811. doi:10.1007/s11192-011-0457-z.
Choi, S., Yoon, J., Kim, K., Lee, J. Y., & Kim, C. H. (2011). SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells. Scientometrics, 88(3), 863–883. doi:10.1007/s11192-011-0420-z.
Cozzens, S., Gatchair, S., Kang, J., Kim, K.-S., Lee, H. J., Ordóñez, G., et al. (2010). Emerging technologies: quantitative identification and measurement. Technology Analysis & Strategic Management, 22(3), 361–376. doi:10.1080/09537321003647396.
Cunningham, H., Tablan, V., Roberts, A., & Bontcheva, K. (2013). Getting More Out of Biomedical Documents with GATE’s Full Lifecycle Open Source Text Analytics. PLoS Computational Biology, 9(2), e1002854. doi:10.1371/journal.pcbi.1002854.
Day, G. S., & Schoemaker, P. J. H. (2000). Avoiding the Pitfalls of Emerging Technologies. California Management Review, 42(2), 8–33. doi:10.2307/41166030.
Erdi, P., Makovi, K., Somogyvari, Z., Strandburg, K., Tobochnik, J., Volf, P., et al. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95(1), 225–242. doi:10.1007/s11192-012-0796-4.
Furukawa, T., Mori, K., Arino, K., Hayashi, K., & Shirakawa, N. (2015). Identifying the evolutionary process of emerging technologies: A chronological network analysis of World Wide Web conference sessions. Technological Forecasting and Social Change, 91, 280–294. doi:10.1016/j.techfore.2014.03.013.
Guo, J., Wang, X., Li, Q., & Zhu, D. (2016). Subject–action–object-based morphology analysis for determining the direction of technological change. Technological Forecasting and Social Change, 105, 27–40. doi:10.1016/j.techfore.2016.01.028.
Guo, H., Weingart, S., & Börner, K. (2011). Mixed-indicators model for identifying emerging research areas. Scientometrics, 89(1), 421–435. doi:10.1007/s11192-011-0433-7.
Ju, Y., & Sohn, Y. (2015). Patent-based QFD framework development for identification of emerging technologies and related business models: A case of robot technology in Korea. Technological Forecasting and Social Change, 94, 44–64. doi:10.1016/j.techfore.2014.04.015.
Kajikawa, Y., Yoshikawa, J., Takeda, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75(6), 771–782. doi:10.1016/j.techfore.2007.05.005.
Kim, Y., Tian, Y., Jeong, Y., Jihee, R., & Myaeng, S.-H. (2009). Automatic discovery of technology trends from patent text. 2009 ACM Symposium on Applied Computing (pp. 1480–1487). Honolulu, Hawaii: ACM.
Kostoff, R. N., Boylan, R., & Simons, G. R. (2004). Disruptive technology roadmaps. Technological Forecasting and Social Change, 71(1–2), 141–159. doi:10.1016/S0040-1625(03)00048-9.
Kostoff, R. N., Solka, J. L., Rushenberg, R. L., & Wyatt, J. A. (2008). Literature-related discovery (LRD): Water purification. Technological Forecasting and Social Change, 75(2), 256–275. doi:10.1016/j.techfore.2007.11.009.
Liu, H., & Singh, P. (2004). ConceptNet - a practical commonsense reasoning tool-kit. Bt Technology Journal, 22(4), 211–226.
lo Storto, C., & Ieee (2008). Exploring innovation trajectories in high-tech industries through patent analysis: the case of the optical memories industry (Iemc - Europe 2008: International Engineering Management Conference, Europe, Conference Proceedings: Managing Engineering, Technology and Innovation for Growth). New York: Ieee.
Moehrle, M. G., Walter, L., Geritz, A., & Muller, S. (2005). Patent-based inventor profiles as a basis for human resource decisions in research and development. R & D Management, 35(5), 513–524. doi:10.1111/j.1467-9310.2005.00408.x.
Park, H., Yoon, J., & Kim, K. (2012). Identifying patent infringement using SAO based semantic technological similarities. Scientometrics, 90(2), 515–529. doi:10.1007/s11192-011-0522-7.
Porter, A. L., & Cunningham, S. W. (2004). Tech mining: Exploiting new technologies for competitive advantage (Vol. 29). New York: Wiley.
Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61(9), 1871–1887. doi:10.1002/asi.21368.
Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827–1843. doi:10.1016/j.respol.2015.06.006.
Seymour, R. (2008). Platinum Group Metals Patent Analysis and Mapping A REVIEW OF PATENTING TRENDS AND IDENTIFICATION OF EMERGING TECHNOLOGIES. Platinum Metals Review, 52(4), 231–240. doi:10.1595/147106708x362735.
Shapira, P., Youtie, J., & Carley, S. (2010). Graphene research profile: UK and US publications, 2000-2010. Program on Nanotechnology Research and Innovation System Assessment: Georgia Institute of Technology Atlanta.
Simpson, S., Packer, C., Carlsson, P., Sanders, J. M., Ibarluzea, I. G., Fay, A. F., et al. (2008). Early identification and assessment of new and emerging health technologies: Actions, progress, and the future direction of an international collaboration-EuroScan. International Journal of Technology Assessment in Health Care, 24(4), 518–524. doi:10.1017/s0266462308080689.
Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2005). Text mining for patent map analysis. Information Processing and Management, 43(5), 1216–1247.
VantagePoint. www.theVantagePoint.com. Accessed 19 November 2016.
Verbitsky, M. (2004). Semantic TRIZ. http://www.triz-journal.com/archives/2004/. Accessed 5 January 2015.
Vidal-Espana, F., Leiva-Fernandez, F., Prados-Torres, J. D., Perea-Milla, E., Gallo-Garcia, C., Irastorza-Aldasoro, A., et al. (2007). Identification of new and emerging technologies. Atencion Primaria, 39(12), 641–646. doi:10.1157/13113954.
Wang, X., Qiu, P., Zhu, D., Mitkova, L., Lei, M., & Porter, A. L. (2015). Identification of technology development trends based on subject–action–object analysis: The case of dye-sensitized solar cells. Technological Forecasting and Social Change, 98, 24–46. doi:10.1016/j.techfore.2015.05.014.
Yang, C., Zhu, D., & Zhang, G. Semantic-Based Technology Trend Analysis. In 2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 24–27 Nov. 2015 2015 (pp. 222–228). doi:10.1109/ISKE.2015.43.
Yang, C., Zhu, D., & Wang, X. (2017). SAO Semantic Information Identification for Text Mining. International Journal of Computational Intelligence Systems, 10(1), 593–604. doi:10.2991/ijcis.2017.10.1.40.
Yoon, J., & Kim, K. (2012). Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics, 90(2), 445–461. doi:10.1007/s11192-011-0543-2.
Yoon, B., & Park, Y. (2005). A systematic approach for identifying technology opportunities: Keyword-based morphology analysis. Technological Forecasting and Social Change, 72(2), 145–160. doi:10.1016/j.techfore.2004.08.011.
Zhang, Y., Zhou, X., Porter, A. L., Gomila, J. M. V., & Yan, A. (2014a). Triple Helix innovation in China’s dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology roadmapping. Scientometrics, 99(1), 55–75. doi:10.1007/s11192-013-1090-9.
Zhang, Y., Zhou, X., Porter, A. L., & Vicente Gomila, J. M. (2014b). How to combine term clumping and technology roadmapping for newly emerging science & technology competitive intelligence: “problem & solution” pattern based semantic TRIZ tool and case study. Scientometrics, 101(2), 1375–1389. doi:10.1007/s11192-014-1262-2.
Zhu, D., & Porter, A. L. (2002). Automated extraction and visualization of information for technological intelligence and forecasting. Technological Forecasting and Social Change, 69(5), 495–506. doi:10.1016/S0040-1625(01)00157-3.
Acknowledgements
This work is supported by the General Program of National Natural Science Foundation of China (Grant Nos. 71673024, 71373019), the Australian Research Council (ARC) under discovery grants DP140101366 and DP150101645. This paper was also funded by the International Graduate Exchange Program of Beijing Institute of Technology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, C., Zhu, D., Wang, X. et al. Requirement-oriented core technological components’ identification based on SAO analysis. Scientometrics 112, 1229–1248 (2017). https://doi.org/10.1007/s11192-017-2444-5
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-017-2444-5