Improving the publication delay model to characterize the patent granting process | Scientometrics Skip to main content
Log in

Improving the publication delay model to characterize the patent granting process

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Drawing upon the periodical publication delay model and the Weibull distribution model, we develop an improved model and conduct an exploratory analysis to characterize patent grant delay, and learn the crux of the problem. In order to test the effect of the new model, we perform an experiment based on a database of four technological fields from the United States Patent and Trademark Office. The results show that the new model can improve the fitting effect, and is suitable for calculating the time delay between patent application and grant. In addition, we apply the improved model in two different technological fields to study the changing rules in the last two decades by comparing the results, and obtain some valuable information. For a theoretical contribution, we deduce the examination probability under steady-state conditions, extend the periodical publication delay model from a negative exponential distribution to a Weibull distribution, and overcome the shortcomings of the original model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adebayo Oluwakemi, O., & Omodele, I. (2015). The current status of cereal (maize, rice and sorghum) crops cultivation in Africa: Need for integration of advances in transgenic for sustainable crop production. International Journal of Agricultural Policy and Research, 3, 133–145.

    Google Scholar 

  • Adenle, A. A., Haslam, G. E., & Lee, L. (2013). Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy, 61, 182–195.

    Article  Google Scholar 

  • Albrecht, J., Carrez, D., Cunningham, P., Daroda, L., Mancia, R., Máthé, L., et al. (2010). The knowledge based bio-economy (KBBE) in Europe: Achievements and challenges, Brussels, Belgium. http://www. io-economy. net/reports/files/koln _ paper. Pdf.

    Google Scholar 

  • Aoki, R., & Spiegel, Y. (2009). Pre-grant patent publication and cumulative innovation. International Journal of Industrial Organization, 27(3), 333–345.

    Article  Google Scholar 

  • Archontopoulos, E., Guellec, D., et al. (2007). When small is beautiful: Measuring the evolution and consequences of the voluminosity of patent applications at the EPO. Information Economics and Policy, 19(2), 103–132.

    Article  Google Scholar 

  • Austin, D. H. (1993). An event-study approach to measuring innovative output: The case of biotechnology. The American Economic Review, 83(2), 253–258.

    Google Scholar 

  • Barberá-Tomás, D., Jiménez-Sáez, F., et al. (2011). Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks. Research Policy, 40(3), 473–486.

    Article  Google Scholar 

  • Batabyal, A. A., & Nijkamp, P. (2008). Is there a tradeoff between average patent pendency and examination errors? International Review of Economics and Finance, 17(1), 150–158.

    Article  Google Scholar 

  • Bonaccorsi, A., & Thoma, G. (2007). Institutional complementarity and inventive performance in nano science and technology. Research Policy, 36, 813–831.

    Article  Google Scholar 

  • Chang, P., Wu, C., et al. (2010). Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display. Scientometrics, 82(1), 5–19.

    Article  MathSciNet  Google Scholar 

  • Chen, Y., Yang, Z., et al. (2009). A patent based evaluation of technological innovation capability in eight economic regions in PR China. World Patent Information, 31(2), 104–110.

    Article  Google Scholar 

  • de la Potterie, B. V. P., & François, D. (2009). The cost factor in patent systems. Journal of Industry, Competition and Trade, 9(4), 329–355.

    Article  Google Scholar 

  • de Rassenfosse, G. (2013). Do firms face a trade-off between the quantity and the quality of their inventions? Research Policy, 42(5), 1072–1079.

    Article  Google Scholar 

  • Dolle, R. E. (2011). Historical overview of chemical library design. Chemical Library Design, 3–25.

  • Ernst, H., & Omland, N. (2011). The Patent Asset Index—A new approach to benchmark patent portfolios. World Patent Information, 33(1), 34–41.

    Article  Google Scholar 

  • Fernandez, A., Collado, J., et al. (2002). Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. International Journal of Food Microbiology, 77(1–2), 147–153.

    Article  Google Scholar 

  • Gallini, N. T. (2002). The Economics of Patents: Lessons from Recent US Patent Reform. Journal of Economic Perspectives, 16(2), 131–154.

    Article  Google Scholar 

  • Gans, J. S., Hsu, D. H., et al. (2008). The impact of uncertain intellectual property rights on the market for ideas: evidence from patent grant delays. Management Science, 54(5), 982–997.

    Article  Google Scholar 

  • Gao, X., Guo, X., et al. (2014). An analysis of the patenting activities and collaboration among industry-university-research institutes in the Chinese ICT sector. Scientometrics, 98(1), 247–263.

    Article  MathSciNet  Google Scholar 

  • Guan, J., & Liu, N. (2015). Invention profiles and uneven growth in the field of emerging nano-energy. Energy Policy, 76, 146–157.

    Article  Google Scholar 

  • Harhoff, D., & Stefan, W. (2005). Modeling the duration of patent examination at the European Patent Office. DP5283.

  • Hartmann, M., & Hassan, A. (2006). Application of real options analysis for pharmaceutical R&D project valuation—Empirical results from a survey. Research Policy, 35, 343–354.

    Article  Google Scholar 

  • Hassan, M. (2005). Small things and big changes in the developing world. Science, 5731, 65–66.

    Article  Google Scholar 

  • Hegde, D. (2014). Tacit knowledge and the structure of license contracts: Evidence from the biomedical industry. Journal of Economics and Management Strategy, 23(3), 568–600.

    Article  Google Scholar 

  • Hegde, D., & Luo, H. (2013). Imperfect information, patent publication, and the market for ideas. Harvard Business School Strategy Unit, Working paper no. 14–019. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2293225.

  • Henkel, J., & Jell, F. (2010). Patent pending—Why faster isn’t always better. SSRN Working Paper Series. Available at SSRN 1738912.

  • Hennicke, P., & Fischedick, M. (2006). Towards sustainable energy systems: The related role of hydrogen. Energy Policy, 34, 1260–1270.

    Article  Google Scholar 

  • Hu, X., Rousseau, R., et al. (2012). A new approach for measuring the value of patents based on structural indicators for ego patent citation networks. Journal of the American Society for Information Science and Technology, 63(9), 1834–1842.

    Article  Google Scholar 

  • Huang, M., Chen, S., et al. (2014a). Exploring temporal relationships between scientific and technical fronts: A case of biotechnology field. Scientometrics, 98(2), 1085–1100.

    Article  Google Scholar 

  • Huang, M., Dong, H., et al. (2013). The unbalanced performance and regional differences in scientific and technological collaboration in the field of solar cells. Scientometrics, 94(1), 423–438.

    Article  Google Scholar 

  • Huang, M., Huang, W., et al. (2014b). Technological impact factor: An indicator to measure the impact of academic publications on practical innovation. Journal of Informetrics, 8(1), 241–251.

    Article  MathSciNet  Google Scholar 

  • Jaffe, A. B. (2000). The U.S. patent system in transition: policy innovation and the innovation process. Research Policy, 29(4), 531–557.

    Article  Google Scholar 

  • Johnson, D., & Popp, D. (2003). Forced out of the closet: the impact of the American inventor’s protection act on the timing of patent disclosure. The Rand Journal of Economics, 34(1), 96–112.

    Article  Google Scholar 

  • Kevles, D. (2002). Of mice and money: the story of the world’s first animal patent. Daedalus, 2, 78–88.

    Google Scholar 

  • Lazaridis, G., van Pottelsberghe De, B., & Potterie, La. (2007). The rigour of EPO’s patentability criteria: An insight into the “induced withdrawals”. World Patent Information, 29(4), 317–326.

    Article  Google Scholar 

  • Lee, P., Su, H., & Wu, F. (2010). Quantitative mapping of patented technology—The case of electrical conducting polymer nanocomposite. Technological Forecasting and Social Change, 77, 466–478.

    Article  Google Scholar 

  • Li, R., Chambers, T., Ding, Y., Zhang, G., & Meng, L. (2014). Patent citation analysis: Calculating science linkage based on citing motivation. Journal of the Association for Information Science and Technology, 65(5), 1007–1017.

    Article  Google Scholar 

  • Link, A. N., Siegel, D. S., et al. (2011). Public science and public innovation: Assessing the relationship between patenting at US National Laboratories and the Bayh-Dole Act. Research Policy, 40(8), 1094–1099.

    Article  Google Scholar 

  • Liu, W., Gu, M., Hu, G., Li, C., Liao, H., & Tang, L. (2014). Profile of developments in biomass-based bioenergy research: A 20-year perspective. Scientometrics, 99(2), 507–621.

    Article  Google Scholar 

  • Meldrum, C., Doyle, M. A., & Tothill, R. W. (2011). Next-generation sequencing for cancer diagnostics: A practical perspective. The Clinical Biochemist Reviews, 32(4), 177–195.

    Google Scholar 

  • Munos, B. (2009). Lessons from 60 years of pharmaceutical innovation. Nature Reviews Drug Discovery, 8, 959–968.

    Article  Google Scholar 

  • Nelson, A. J. (2009). Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion. Research Policy, 38(6), 994–1005.

    Article  Google Scholar 

  • Patel, D., & Ward, M. R. (2011). Using patent citation patterns to infer innovation market competition. Research Policy, 40(6), 886–894.

    Article  Google Scholar 

  • Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., et al. (2010). How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nature Reviews Drug Discovery, 9, 203–214.

    Google Scholar 

  • Popp, D., & Juhl, T., et al. (2003). Time in Purgatory: Determinants of the grant lag for US patent applications. National Bureau of Economic Research, Cambridge. Working Paper.

  • Reitzig, M., & Puranam, P. (2009). Value appropriation as an organizational capability: The case of IP protection through patents. Strategic Management Journal, 30(7), 765–789.

    Article  Google Scholar 

  • Rennings, K. (2000). Redefining innovation: Eco-innovation research and the contribution from ecological economics. Ecological Economics, 32(2), 319–332.

    Article  Google Scholar 

  • Ribeiro, L. C., Ruiz, R. M., et al. (2010). Matrices of science and technology interactions and patterns of structured growth: Implications for development. Scientometrics, 83(1), 55–75.

    Article  Google Scholar 

  • Sastry, K. R., Rashmi, H. B., et al. (2011). Research and development perspectives of transgenic cotton: Evidence from patent landscape studies. Journal of Intellectual Property Rights, 16(2), 139–153.

    Google Scholar 

  • Schmoch, U. (2009). Patent analyses in the changed legal regime of the US Patent Law since 2001. World Patent Information, 31(4), 299–303.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., et al. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147–1155.

    Article  Google Scholar 

  • Shin, J. C., Lee, S. J., et al. (2012). Knowledge-based innovation and collaboration: A triple-helix approach in Saudi Arabia. Scientometrics, 90(1), 311–326.

    Article  Google Scholar 

  • Strevens, M. (2003). The role of the priority rule in science. The Journal of Philosophy, 100(2), 55–79.

    Article  Google Scholar 

  • Tegart, G. (2009). Energy and nanotechnologies: priority areas for Australia’s future. Technological Forecasting and Social Change, 9, 1126–1240.

    Google Scholar 

  • Toole, A. (2012). The impact of public basic research on industrial innovation: Evidence from the pharmaceutical industry. Research Policy, 41, 1–12.

    Article  Google Scholar 

  • Wang, G., & Guan, J. (2011). Measuring science-technology interactions using patent citations and author-inventor links: an exploration analysis from Chinese nanotechnology. Journal of Nanoparticle Research, 13(12), 6245–6262.

    Article  Google Scholar 

  • Wang, X., Zhao, Y., et al. (2013). Knowledge-transfer analysis based on co-citation clustering. Scientometrics, 97(3), 859–869.

    Article  MathSciNet  Google Scholar 

  • Wen, J. (2012a). Study on the impact mechanism of the patent examination behavior on technological innovation. Studies in Science of Science, 30(6), 848–855. (in Chinese).

    Google Scholar 

  • Wen, J. (2012b). The risk caused by patent grant delay and its effect. Science Research Management, 33(5), 139–145. (in Chinese).

    Google Scholar 

  • Xie, Y., & Giles, D. E. (2011). A survival analysis of the approval of US patent applications. Applied Economics, 43(11), 1375–1384.

    Article  Google Scholar 

  • Yu, G., Guo, R., et al. (2006). The influence of publication delays on three ISI indicators. Scientometrics, 69(3), 511–527.

    Article  Google Scholar 

  • Yu, G., Wang, X., et al. (2005). The influence of publication delays on impact factors. Scientometrics, 64(2), 235–246.

    Article  Google Scholar 

  • Yu, G., Yu, D., et al. (2000). The mathematical models of the periodical literature publishing process. Information Processing and Management, 36(3), 401–414.

    Article  Google Scholar 

  • Yu, G., Yu, D., et al. (2004). The universal expression of periodical average publication delay at steady state. Scientometrics, 60(2), 121–129.

    Article  Google Scholar 

  • Zhao, Q., & Guan, J. (2012). Modeling the dynamic relation between science and technology in nanotechnology. Scientometrics, 90(2), 561–579.

    Article  Google Scholar 

  • Zhao, Q., & Guan, J. (2013). Love dynamics between science and technology: Some evidences in nanoscience and nanotechnology. Scientometrics, 94, 113–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guijie Zhang or Yuqiang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yu, G., Feng, Y. et al. Improving the publication delay model to characterize the patent granting process. Scientometrics 111, 621–637 (2017). https://doi.org/10.1007/s11192-017-2324-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2324-z

Keywords

Navigation