Abstract
With increasing uptake among researchers, social media are finding their way into scholarly communication and, under the umbrella term altmetrics, are starting to be utilized in research evaluation. Fueled by technological possibilities and an increasing demand to demonstrate impact beyond the scientific community, altmetrics have received great attention as potential democratizers of the scientific reward system and indicators of societal impact. This paper focuses on the current challenges for altmetrics. Heterogeneity, data quality and particular dependencies are identified as the three major issues and discussed in detail with an emphasis on past developments in bibliometrics. The heterogeneity of altmetrics reflects the diversity of the acts and online events, most of which take place on social media platforms. This heterogeneity has made it difficult to establish a common definition or conceptual framework. Data quality issues become apparent in the lack of accuracy, consistency and replicability of various altmetrics, which is largely affected by the dynamic nature of social media events. Furthermore altmetrics are shaped by technical possibilities and are particularly dependent on the availability of APIs and DOIs, strongly dependent on data providers and aggregators, and potentially influenced by the technical affordances of underlying platforms.
Similar content being viewed by others
Notes
The loss might be avoided or at least mitigated by maintaining a dark archive, which was mentioned by Altmetric founder Euan Adie in a tweet: https://twitter.com/stew/status/595527260817469440.
In the short history of altmetrics, such loss can already be observed for Connotea.
References
Alperin, J. P. (2015). Geographic variation in social media metrics: An analysis of Latin American journal articles. Aslib Journal of Information Management, 67(3), 289–304. doi:10.1108/AJIM-12-2014-0176.
Bar-Ilan, J. (2014). JASIST@ Mendeley revisited. In altmetrics14: expanding impacts and metrics, workshop at web science conference 2014. Retrieved from http://files.figshare.com/1504021/JASIST_new_revised.pdf
Björneborn, L., & Ingwersen, P. (2004). Toward a basic framework for webometrics. Journal of the American Society for Information Science and Technology, 55(14), 1216–1227. doi:10.1002/asi.20077.
Bornmann, L., & Leydesdorff, L. (2013). The validation of (advanced) bibliometric indicators through peer assessments: A comparative study using data from InCites and F1000. Journal of Informetrics, 7(2), 286–291. doi:10.1016/j.joi.2012.12.003.
Costas, R., Zahedi, Z., & Wouters, P. (2015). Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective. Journal of the Association for Information Science and Technology, 66(10), 2003–2019. doi:10.1002/asi.23309.
Cronin, B. (2016). The Incessant chattering of texts. In C. R. Sugimoto (Ed.), Theories of informetrics and scholarly communication. A Festschrift in Honor of Blaise Cronin (pp. 13–19). Berlin: De Gruyter.
Cronin, B., Snyder, H. W., Rosenbaum, H., Martinson, A., & Callahan, E. (1998). Invoked on the web. Journal of the American Society for Information Science, 49(14), 1319–1328. doi:10.1002/(SICI)1097-4571(1998)49:14<1319:AID-ASI9>3.0.CO;2-W.
Dahler-Larsen, P. (2012). The evaluation society. Stanford, CA: Stanford Business Books, an imprint of Stanford University Press.
Dinsmore, A., Allen, L., & Dolby, K. (2014). Alternative perspectives on impact: The potential of ALMs and altmetrics to inform funders about research impact. PLoS Biology, 12(11), e1002003.
Garfield, E. (1955). Citation indexes for science. A new dimension in documentation through association of ideas. Science, 122, 108–111.
Gilbert, G. N. (1977). Referencing as persuasion. Social Studies of Science, 7(1), 113–122.
Glänzel, W., & Gorraiz, J. (2015). Usage metrics versus altmetrics: Confusing terminology? Scientometrics, 102(3), 2161–2164. doi:10.1007/s11192-014-1472-7.
Gross, P. L. K., & Gross, E. M. (1927). College libraries and chemical education. Science, 66(1713), 385–389.
Haustein, S., Bowman, T. D., & Costas, R. (2015a). When is an article actually published? An analysis of online availability, publication, and indexation dates. In Proceedings of the 15th international society of scientometrics and informetrics conference (pp. 1170–1179). Istanbul, Turkey.
Haustein, S., Bowman, T. D., & Costas, R. (2016a). Interpreting “altmetrics”: viewing acts on social media through the lens of citation and social theories. In C. R. Sugimoto (Ed.), Theories of informetrics and scholarly communication. A Festschrift in Honor of Blaise Cronin (pp. 372–405). Berlin: De Gruyter. Retrieved from http://arxiv.org/abs/1502.05701
Haustein, S., Bowman, T. D., Holmberg, K., Tsou, A., Sugimoto, C. R., & Larivière, V. (2016b). Tweets as impact indicators: Examining the implications of automated “bot” accounts on Twitter. Journal of the Association for Information Science and Technology, 67(1), 232–238. doi:10.1002/asi.23456.
Haustein, S., Costas, R., & Larivière, V. (2015b). Characterizing social media metrics of scholarly papers: The effect of document properties and collaboration patterns. PLoS ONE, 10(3), e0120495. doi:10.1371/journal.pone.0120495.
Haustein, S., & Larivière, V. (2015). The use of bibliometrics for assessing research: possibilities, limitations and adverse effects. In I. M. Welpe, J. Wollersheim, S. Ringelhan, & M. Osterloh (Eds.), Incentives and performance: Governance of knowledge-intensive organizations (pp. 121–139). Springer International Publishing. Retrieved from http://link.springer.com/chapter/10.1007/978-3-319-09785-5_8
Haustein, S., Larivière, V., Thelwall, M., Amyot, D., & Peters, I. (2014). Tweets vs. Mendeley readers: How do these two social media metrics differ? It—Information Technology, 56(5), 207–215. doi:10.1515/itit-2014-1048.
Haustein, S., Sugimoto, C., & Larivière, V. (2015c). Guest editorial: Social media in scholarly communication. Aslib Journal of Information Management,. doi:10.1108/AJIM-03-2015-0047.
Higher Education Funding Council for England. (2011). Decisions on assessing research impact. Research Excellent Framework (REF) 2014 (Research Excellence Framework No. 01.2011). Retrieved from http://www.ref.ac.uk/media/ref/content/pub/decisionsonassessingresearchimpact/01_11.pdf
Jobmann, A., Hoffmann, C. P., Künne, S., Peters, I., Schmitz, J., & Wollnik-Korn, G. (2014). Altmetrics for large, multidisciplinary research groups: Comparison of current tools. Bibliometrie-Praxis Und Forschung, 3. Retrieved from http://www.bibliometrie-pf.de/index.php/bibliometrie/article/view/205
Lazarsfeld, P. F. (1993). On social research and its language. Chicago: University of Chicago Press.
Li, X., Thelwall, M., & Giustini, D. (2012). Validating online reference managers for scholarly impact measurement. Scientometrics, 91(2), 461–471. doi:10.1007/s11192-011-0580-x.
Lin, J., & Fenner, M. (2013). Altmetrics in evolution: Defining and redefining the ontology of article-level metrics. Information Standards Quarterly, 25(2), 20–26.
Mas-Bleda, A., Thelwall, M., Kousha, K., & Aguillo, I. F. (2014). Do highly cited researchers successfully use the social web? Scientometrics, 101(1), 337–356. doi:10.1007/s11192-014-1345-0.
Moed, H. F. (2016). Altmetrics as traces of the computerization of the research process. In C. R. Sugimoto (Ed.), Theories of informetrics and scholarly communication. A Festschrift in Honor of Blaise Cronin (pp. 360–371). Berlin: De Gruyter.
Moed, H. F., Burger, W. J. M., Frankfort, J. G., & Van Raan, A. F. J. (1985). The use of bibliometric data for the measurement of university research performance. Research Policy, 14(3), 131–149. doi:10.1016/0048-7333(85)90012-5.
Piwowar, H. (2013). Value all research products. Nature, 493, 159. doi:10.1038/493159a.
Priem, J. (2014). Altmetrics. In B. Cronin & C. R. Sugimoto (Eds.), Beyond bibliometrics: harnessing multidimensional indicators of performance (pp. 263–287). Cambridge, MA: MIT Press.
Priem, J., & Hemminger, B. M. (2010). Scientometrics 2.0: Toward new metrics of scholarly impact on the social Web. First Monday, 15(7). Retrieved from http://pear.accc.uic.edu/ojs/index.php/fm/rt/printerFriendly/2874/2570
Priem, J., Piwowar, H. A., & Hemminger, B. M. (2012). Altmetrics in the wild: Using social media to explore scholarly impact. arXiv Print, 1–17.
Priem, J., Taraborelli, D., Groth, P., & Neylon, C. (2010, October 26). Altmetrics: A manifesto. Retrieved from http://altmetrics.org/manifesto/
Rousseau, R., & Ye, F. Y. (2013). A multi-metric approach for research evaluation. Chinese Science Bulletin, 58(26), 3288–3290. doi:10.1007/s11434-013-5939-3.
Rowlands, I., Nicholas, D., Russell, B., Canty, N., & Watkinson, A. (2011). Social media use in the research workflow. Learned Publishing, 24(3), 183–195. doi:10.1087/20110306.
Sugimoto, C. R. (Ed.). (2016). Theories of informetrics and scholarly communication. Berlin: De Gruyter.
Taylor, M. (2013). Towards a common model of citation: Some thoughts on merging altmetrics and bibliometrics. Research Trends, 35, 1–6.
Thelwall, M., & Wilson, P. (2015). Mendeley readership altmetrics for medical articles: An analysis of 45 fields. Journal of the Association for Information Science and Technology,. doi:10.1002/asi.23501.
Van Noorden, R. (2014). Online collaboration: Scientists and the social network. Nature, 512(7513), 126–129. doi:10.1038/512126a.
Waltman, L., & Costas, R. (2014). F1000 recommendations as a potential new data source for research evaluation: A comparison with citations. Journal of the Association for Information Science and Technology, 65(3), 433–445. doi:10.1002/asi.23040.
Wilsdon, J., Allen, L., Belfiore, E., Campbell, P., Curry, S., Hill, S., et al. (2015). The metric tide: report of the independent review of the role of metrics in research assessment and management.,. doi:10.13140/RG.2.1.4929.1363.
Zahedi, Z., Bowman, T. D., & Haustein, S. (2014a). Exploring data quality and retrieval strategies for Mendeley reader counts. Presented at the SIG/MET workshop, ASIS&T 2014 annual meeting, Seattle. Retrieved from http://www.asis.org/SIG/SIGMET/data/uploads/sigmet2014/zahedi.pdf
Zahedi, Z., Costas, R., & Wouters, P. (2014b). Assessing the impact of publications saved by Mendeley users: Is there any different pattern among users? In IATUL conference, Espoo, Finland, June 2–5 2014. Retrieved from http://docs.lib.purdue.edu/iatul/2014/altmetrics/4
Zahedi, Z., Fenner, M., & Costas, R. (2014c). How consistent are altmetrics providers? Study of 1000 PLOS ONE publications using the PLOS ALM, Mendeley and Altmetric. com APIs. In altmetrics 14. Workshop at the web science conference, Bloomington, USA. Retrieved from http://files.figshare.com/1945874/How_consistent_are_altmetrics_providers__5_.pdf
Zahedi, Z., Fenner, M., & Costas, R. (2015). Consistency among altmetrics data provider/aggregators: What are the challenges? In altmetrics15: 5 years in, what do we know? Amsterdam, The Netherlands. Retrieved from http://altmetrics.org/wp-content/uploads/2015/09/altmetrics15_paper_14.pdf
Acknowledgments
The author acknowledges funding from the Alfred P. Sloan Foundation Grant # 2014-3-25. She would also like to thank Vincent Larivière for stimulating discussions and helpful suggestions on the manuscript, as well as Sam Work for proofreading.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Haustein, S. Grand challenges in altmetrics: heterogeneity, data quality and dependencies. Scientometrics 108, 413–423 (2016). https://doi.org/10.1007/s11192-016-1910-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-016-1910-9