Abstract
A series of techniques based on bibliometric clustering and mapping for scientometrics analysis was implemented in a software toolkit called CATAR for free use. Application of the toolkit to the field of library and information science (LIS) based on journal clustering for subfield identification and analysis to suggest a proper set of LIS journals for research evaluation is described. Two sets of data from Web of Science in the Information Science & Library Science (IS&LS) subject category of Journal Citation Reports were analyzed: one ranges from year 2000 to 2004, the other from 2005 to 2009. The clustering results in graphic dendrograms and multi-dimensional scaling maps from both datasets consistently show that some IS&LS journals clustered in the management information systems subfield are distant from the other journals in terms of their intellectual base. Additionally, the cluster characteristics analyzed based on a diversity index reveals the regional characteristics for some identified subfields. Since journal classification has become a high-stake issue that affects the evaluation of scholars and universities in some East Asian countries, both cases (isolation in intellectual base and regionalism in national interest) should be taken into consideration when developing research evaluation in LIS based on journal classification and ranking for the evaluation to be fairly implemented without biasing future LIS research.
Similar content being viewed by others
Notes
As noted on the Wikipedia web site, there is no generally agreed-upon distinction between the terms “library science” (LS) and “library and information science” (LIS) and to a certain extent they are interchangeable, with the later (LIS) being most often used.
References
Ahlgren, P., & Colliander, C. (2009). Document-document similarity approaches and science mapping: Experimental comparison of five approaches. Journal of Informetrics, 3(1), 49–63. doi:10.1016/j.joi.2008.11.003.
Ahlgren, P., & Jarneving, B. (2008). Bibliographic coupling, common abstract stems and clustering: A comparison of two document–document similarity approaches in the context of science mapping. Scientometrics, 76(2), 273–290. doi:10.1007/s11192-007-1935-1.
Åström, F. (2002). Visualizing library and information science concept spaces through keyword and citation based maps and clusters. In H. Bruce, R. Fidel, P. Ingwersen, & P. Vakkari (Eds.), The fourth international conference on conceptions of library and information science (CoLIS4) University of Washington, Seattle, WA, July 21–25 2002 (pp. 185–197). Greenwood Village: Libraries Unlimited.
Åström, F. (2007). Changes in the LIS research front: Time-sliced cocitation analyses of LIS journal articles, 1990–2004. Journal of the American Society for Information Science and Technology, 58(7), 947–957. doi:10.1002/asi.v58:7.
Börner, K., Huang, W., Linnemeier, M., Duhon, R., Phillips, P., Ma, N., et al. (2010). Rete-netzwerk-red: analyzing and visualizing scholarly networks using the Network Workbench Tool. Scientometrics, 83(3), 863–876. doi:10.1007/s11192-009-0149-0.
Börner, K., Chen, C., & Boyack, K. W. Visualizing knowledge domains. In B. Cronin (Ed.), Annual review of information science & technology (ARIST), 2003 (vol. 37, pp. 179–255). Medford, NJ: Information Today, Inc.
Bush, I. R., Epstein, I., & Sainz, A. (1997). The use of social science sources in social work practice journals: An application of citation analysis. Social Work Research, 21(1), 45–56. doi:10.1093/swr/21.1.45.
Buter, R. K., & Noyons, E. C. M. (2001). Improving the functionality of interactive bibliometric science maps. Scientometrics, 51(1), 55–68. doi:10.1023/a:1010560527236.
Calkins, S. (1983). The new merger guidelines and the Herfindahl–Hirschman index. California Law Review, 71(2), 402–429.
Carpenter, M. P., & Narin, F. (1973). Clustering of scientific journals. Journal of the American Society for Information Science, 24(6), 425–436. doi:10.1002/asi.4630240604.
Chang, Y.-W., & Huang, M.-H. (2012). A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods. Journal of the American Society for Information Science and Technology, 63(1), 22–33. doi:10.1002/asi.21649.
Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.
Chen, C. M., Ibekwe-SanJuan, F., & Hou, J. H. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409. doi:10.1002/asi.21309.
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science Mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.
Evans, J. A. (2008). Electronic publication and the narrowing of science and scholarship. Science, 321(5887), 395–399. doi:10.1126/science.1150473.
Fernandez-Cano, A., & Bueno, A. (2002). Multivariate evaluation of Spanish educational research journals. Scientometrics, 55(1), 87–102. doi:10.1023/a:1016003104436.
Hirschman, A. O. (1964). The paternity of an index. The American Economic Review, 54(5), 761.
Janssens, F., Leta, J., Glanzel, W., & De Moor, B. (2006). Towards mapping library and information science. Information Processing and Management, 42(6), 1614–1642. doi:10.1016/j.ipm.2006.03.025.
Jarneving, B. (2007). Bibliographic coupling and its application to research-front and other core documents. Journal of Informetrics, 1(4), 287–307. doi:10.1016/j.joi.2007.07.004.
Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.
Kleiweg, P. (2008). Software for dialectometrics and cartography. Retrieved December 31, 2008 from http://www.let.rug.nl/~kleiweg/L04/.
Kruskal, J. B. (1997). Multidimensional scaling and other methods for discovering structure. In K. Enslein, A. Ralston, & H. S. Wilf (Eds.), Statistical methods for digital computers (pp. 296–339). New York: Wiley.
Larivière, V., Gingras, Y., & Archambault, É. (2009). The decline in the concentration of citations, 1900–2007. Journal of the American Society for Information Science and Technology, 60(4), 858–862. doi:10.1002/asi.v60:4.
Larivière, V., Sugimoto, C. R., & Cronin, B. (2012). A bibliometric chronicling of library and information science’s first hundred years. Journal of the American Society for Information Science and Technology, 63(5), 997–1016. doi:10.1002/asi.22645.
Leydesdorff, L. (2001). The challenge of scientometrics: The development, measurement, and self-organization of scientific communications. Leiden: DSWO.
Leydesdorff, L. (2006). Can scientific journals be classified in terms of aggregated journal–journal citation relations using the journal citation reports. Journal of the American Society for Information Science and Technology, 57(5), 601–613.
Leydesdorff, L. (2008). Caveats for the use of citation indicators in research and journal evaluations. Journal of the American Society for Information Science and Technology, 59(2), 278–287.
Liston-Heyes, C., & Pilkington, A. (2004). Inventive concentration in the production of green technology: A comparative analysis of fuel cell patents. Science and Public Policy, 31(1), 15–25.
McCain, K. W. (1991). Core journal networks and cocitation maps: new bibliometric tools for serials research and management. Library Quarterly, 61(3), 311–336.
Milojevic, S., Sugimoto, C. R., Yan, E. J., & Ding, Y. (2011). The cognitive structure of library and information science: Analysis of article title words. Journal of the American Society for Information Science and Technology, 62(10), 1933–1953. doi:10.1002/asi.21602.
Moed, H. F. (2005). Citation analysis in research evaluation. Dordrecht: Springer.
Moya-Anegon, F., Herrero-Solana, V., & Jimenez-Contreras, E. (2006). A connectionist and multivariate approach to science maps: the SOM, clustering and MDS applied to library science research and information. Journal of Information Science, 32(1), 63–77. doi:10.1177/0165551506059226.
Ni, C., & Ding, Y. (2010). Journal clustering through interlocking editorship information. In Paper presented at the Proceedings of the 73rd ASIS&T Annual Meeting on Navigating Streams in an Information Ecosystem (vol. 47). Pittsburgh, PA, USA.
Ni, C., & Sugimoto, C. R. (2011). Four-facets study of scholarly communities: Artifact, producer, concept, and gatekeeper. In A. Grove (Ed.), Annual Meeting of the American Society for Information Science and Technology, New Orleans, Louisiana, USA, October 9–12, 2011 (vol. 48).
Ni, C., Sugimoto, C., & Cronin, B. (2012). Visualizing and comparing four facets of scholarly communication: producers, artifacts, concepts, and gatekeepers. Scientometrics, 1–13, doi:10.1007/s11192-012-0849-8.
Nisonger, T. E., & Davis, C. H. (2005). The perception of library and information science journals by LIS education deans and ARL library directors: A replication of the Kohl–Davis study. College & Research Libraries, 66(4), 341–377.
Nooy, W. D., Mrvar, A., & Batagelj, V. (2012). Exploratory social network analysis with Pajek (structural analysis in the social sciences (no. 34)).
Noyons, E. C. M., Moed, H. F., & Luwel, M. (1999a). Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. Journal of the American Society for Information Science, 50(2), 115–131. doi:10.1002/(sici)1097-4571(1999)50:2<115:aid-asi3>3.0.co;2-j.
Noyons, E. C. M., Moed, H. F., & van Raan, A. F. J. (1999b). Intergrating research performance analysis and science mapping. Scientometrics, 46(3), 591–604.
Noyons, E. C. M., & Van Raan, A. F. J. (1998). Advanced mapping of science and technology. Scientometrics, 41(1–2), 61–67. doi:10.1007/bf02457967.
Persson, O. (2009). BibExcel. Inforsk, Umeå Univ, Sweden. http://www8.umu.se/inforsk/Bibexcel/. Accessed 25 Oct 2012.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. doi:10.1016/0377-0427(87)90125-7.
Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval of information by computer. Reading, MA: Addison-Wesley.
Schildt, H. A., & Mattsson, J. T. (2006). A dense network sub-grouping algorithm for co-citation analysis and its implementation in the software tool Sitkis. Scientometrics, 67(1), 143–163. doi:10.1556/Scient.67.2006.1.9.
Sci2 Team. (2009). Science of Science (Sci2) Tool. Indiana University and SciTech Strategies. Retrieved August 12, 2008 from https://sci2.cns.iu.edu.
Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.
Small, H. G., & Koenig, M. E. D. (1977). Journal clustering using a bibliographic coupling method. Information Processing and Management, 13(5), 277–288. doi:10.1016/0306-4573(77)90017-6.
Tseng, Y.-H. (1998). Multilingual keyword extraction for term suggestion. In 21st International ACM SIGIR conference on research and development in information retrieval—SIGIR ‘98, Australia, Aug. 24–28 1998 (pp. 377–378).
Tseng, Y.-H. (2002). Automatic thesaurus generation for Chinese documents. Journal of the American Society for Information Science and Technology, 53(13), 1130–1138.
Tseng, Y.-H. (2010). Generic title labeling for clustered documents. Expert Systems with Applications, 37(3), 2247–2254.
Tseng, Y.-H., Lin, Y.-I., Lee, Y.-Y., Hung, W.-C., & Lee, C.-H. (2009). A comparison of methods for detecting hot topics. Scientometrics, 81(1), 73–90.
Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing and Management, 43(5), 1216–1247.
Van Eck, N. J., & Waltman, L. (2009). VOSviewer. Leiden: Centre for Science and Technology Studies (CWTS) of Leiden University. http://www.vosviewer.com/. Accessed 03 Oct 2012.
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.
van Eck, N. J., & Waltman, L. (2012). Multiple perspectives on bibliometric data: Combining different science mapping approaches using VOSviewer. In Paper presented at the 2nd Global TechMining conference, Montreal, Quebec, Canada, September 5.
Van Raan, A. (1997). Scientometrics: State-of-the-art. Scientometrics, 38(1), 205–218. doi:10.1007/bf02461131.
van Rijsbergen, C. J. (1979). Information retrieval. Retrieved October 25, 2009 from http://www.dcs.gla.ac.uk/Keith/Chapter.2/Table_2.1.html.
Wall, L., Christiansen, T., & Orwant, J. (2000). Programming Perl (3rd ed.). Sebastopol, CA: O’Reilly.
Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635. doi:10.1016/j.joi.2010.07.002.
Waltman, L., Yan, E., & van Eck, N. (2011). A recursive field-normalized bibliometric performance indicator: An application to the field of library and information science. Scientometrics, 89(1), 301–314. doi:10.1007/s11192-011-0449-z.
White, H. D., & McCain, K. W. (1997). Visualization of literatures. Annual Review of Information Systems and Technology (ARIST), 32, 99–168.
White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355. doi:10.1002/(sici)1097-4571(19980401)49:4<327:aid-asi4>3.0.co;2-4.
Yan, E. J., & Ding, Y. (2012). Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other. Journal of the American Society for Information Science and Technology, 63(7), 1313–1326. doi:10.1002/asi.22680.
Yang, S., Ma, F., Song, Y., & Qiu, J. (2010). A longitudinal analysis of citation distribution breadth for Chinese scholars. Scientometrics, 85(3), 755–765. doi:10.1007/s11192-010-0245-1.
Zhang, L., Janssens, F., Liang, L. M., & Glanzel, W. (2010). Journal cross-citation analysis for validation and improvement of journal-based subject classification in bibliometric research. Scientometrics, 82(3), 687–706. doi:10.1007/s11192-010-0180-1.
Acknowledgments
This work is supported in part by the “Aim for the Top University Project” of National Taiwan Normal University (NTNU) sponsored by the Ministry of Education, Taiwan, ROC. This work is also supported in part by the National Science Council (NSC) of Taiwan under the Grant NSC 100-2511-S-003-053-MY2. We are grateful to the anonymous reviewers for their valuable comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tseng, YH., Tsay, MY. Journal clustering of library and information science for subfield delineation using the bibliometric analysis toolkit: CATAR. Scientometrics 95, 503–528 (2013). https://doi.org/10.1007/s11192-013-0964-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-013-0964-1