Abstract
Nonlinear systems occur in diverse applications, e.g., in the steady state analysis of chemical processes. If safety concerns require the results to be provably correct then result-verifying algorithms relying on interval arithmetic should be used for solving these systems. Since such algorithms are very computationally intensive, the coarse-grained inter-box parallelism should be exploited to make them feasible in practice. In this paper we briefly describe our framework SONIC for the verified solution of nonlinear systems and give detailed information about its parallelization with OpenMP and MPI. Our numerical results show that the implemented parallelization schemes are indeed successful. The more sophisticated MPI implementation seems to be superior to the easy-to-implement OpenMP version and shows almost linear speedup up to a large number of processors.
Similar content being viewed by others
References
An Mey, D.: Two OpenMP Programming Patterns, in: An Mey, D. (ed.), Proc. EWOMP '03, September 22–26, 2003, Aachen, Germany, Aachen, 2004, pp. 51–60.
Babichev, A. B., Kashevarova, T. P., Leshchenko, A. S., and Semenov, A. L.: UniCalc: An Intelligent Solver for Mathematical Problems, in: Proc. of the East-West Conference on Artificial Intelligence: From Theory to Practice (EWAIC'93), Moscow, 1993, pp. 257–260.
Beelitz, T., Bischof, C. H., and Lang, B.: A Hybrid Subdivision Strategy for Result-Verifying Nonlinear Solvers, in: Proc. Applied Mathematics and Mechanics (PAMM), Vol. 4, 2004, pp. 632–633.
Beelitz, T., Bischof, C. H., and Lang, B.: Intervals and OpenMP: Towards an Efficient Parallel Result-Verifying Nonlinear Solver, in: An Mey, D. (ed.), Proc. EWOMP '03, September 22–26, 2003, Aachen, Germany, Aachen, 2003, pp. 119–125.
Beelitz, T., Bischof, C. H., Lang, B., and Willems, P.: SONIC—A Framework for the Rigorous Solution of Nonlinear Problems, Preprint BUW-SC 04/7, 2004.
Bischof, C. H., Lang, B., Marquardt, W., and Mönnigmann, M.: Verified Determination of Singularities in Chemical Processes, in: Krämer, W. and Wolff von Gudenberg, J. (eds): Scientific Computing, Validated Numerics, Interval Methods, Kluwer Academic/Plenum Publishers, New York, 2001, pp. 305–316.
GlobSol home page: http://www.mcsu.mu.edu/~globsol.
Golubitsky, M. and Schaeffer, D. G.: Singularities and Groups in Bifurcation Theory, Volume I, Springer-Verlag, New York, 1985.
Hammer, R., Hocks, M., Kulisch, U., and Ratz, D.: C++ Toolbox for Verified Computing—Basic Numerical Problems, Springer-Verlag, Heidelberg, 1995.
Hofschuster, W. and Krämer, W.: C-XSC 2.0—A C++ Library for Extended Scientific Computing, in: Alt, R. et al. (eds): Numerical Software with Result Verification, LNCS 2991, Springer, Heidelberg, pp. 15–35.
Hofschuster, W., Krämer, W., Lerch, M., Tischler, G., and Wolff von Gudenberg, J.: filib-++—A Fast Interval Library Supporting Containment Computations, to appear in ACM Trans. Math. Software, 2006.
Intel Corporation: KAI C++ User's Guide, 2001, http://www.kai.com/kpts/-guide.
Intel Corporation: Intel C++ Compiler User's Guide, 2003, http://developer.intel.com/software/products/compilers.
Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, 1996.
Lebbah, Y., Michel, C., Rueher, M., Daney, D., and Merlet, J.-R: Efficient and Safe Global Constraints for Handling Numeric Constraint Systems, SIAM J. Numer. Anal. 42 (5) (2005), pp. 2076–2097.
Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, 1994, http://www.mpi-forum.org.
Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Interface, 1997, http://www.mpi-forum.org.
Mönnigmann, M., Marquardt, W., Bischof, C. H., Beelitz, T., Lang, B., and Willems, P.: A Hybrid Approach for Efficient Robust Design of Dynamic Systems, Preprint BUW-SC 2004/9, 2004.
Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.
Sun Microsystems: Sun Studio 9: C++ Interval Arithmetic Programming Reference, http://docs.sun.com/app/docs/doc/817–6705.
Willems, P.: Symbolisch-numerische Techniken zum verifizierten Lösen nichtlinearer Gleichungs- systeme, Diplomarbeit, RWTH Aachen University, 2004.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially funded by VolkswagenStiftung within the project “Konstruktive Meth-oden der Nichtlinearen Dynamik zum Entwurf verfahrenstechnischer Prozesse,” Geschäftszeichen 1/77 058 and 1/79 288.
Rights and permissions
About this article
Cite this article
Beelitz, T., Lang, B. & Bischof, C.H. Efficient Task Scheduling in the Parallel Result-Verifying Solution of Nonlinear Systems. Reliable Comput 12, 141–151 (2006). https://doi.org/10.1007/s11155-006-4872-4
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11155-006-4872-4