Ground-state and thermal entanglements in non-Hermitian XY system with real and imaginary magnetic fields | Quantum Information Processing Skip to main content
Log in

Ground-state and thermal entanglements in non-Hermitian XY system with real and imaginary magnetic fields

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this manuscript, we study the non-Hermitian spin-1/2 XY model in the presence of the alternating, imaginary and transverse magnetic fields. For the two-site spin system, we solve exactly the energy spectrum and phase diagram and also calculate the ground-state and thermal entanglements by using the concept of the concurrence. It is found that the two-site concurrence in the eigenstate which only depends on the imaginary magnetic field \(\eta \) is always equal to one in the region of \(\mathcal{P}\mathcal{T}\) symmetry, while it decreases with \(\eta \) in the \(\mathcal{P}\mathcal{T}\)-symmetric broken region; especially, the first derivative of concurrence shows the non-analytic behavior at the exceptional point, and the same is true in the case of the biorthogonal basis, which indicates that the concurrence can characterize the phase transition in this non-Hermitian system. The interesting thing is that \(\eta \) weakens the thermal entanglement when the system is isotropic and enhances the entanglement when the system belongs to the Ising universality class. For the one-dimensional spin chain, the magnetization and entanglement are further studied by using the two-spin cluster mean-field approximation. The results show that their variations have opposite trends with the magnetic fields. Moreover, the system exists the first-order quantum phase transitions for some anisotropic parameters in the \(\mathcal{P}\mathcal{T}\)-symmetry region, and the entanglement changes suddenly at the quantum phase transition point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Okołowicz, J., Płoszajczak, M., Rotter, I.: Dynamics of quantum systems embedded in a continuum. Phys. Rep. 374, 271–383 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Pauli, W.: On Dirac’s new method of field quantization. Rev. Mod. Phys. 15, 175–207 (1943)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Dirac, P.A.M.: Bakerian lecture—the physical interpretation of quantum mechanics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 180, 1–40 (1942)

  4. Lee, T.D., Wick, G.C.: Negative metric and the unitarity of the S-matrix. Nucl. Phys. B 9, 209–243 (1969)

    ADS  MATH  Google Scholar 

  5. Brower, R.C., Furman, M.A., Moshe, M.: Critical exponents for the Reggeon quantum spin model. Phys. Lett. B 76, 213–219 (1978)

    ADS  Google Scholar 

  6. Benjamin, C.H., Stanley, T.J., Tan, C.I.: Complex energy spectra in Reggeon quantum mechanics with quartic interactions. Nucl. Phys. B 171, 392–412 (1980)

    Google Scholar 

  7. Benjamin, C.H., Stanley, T.J., Tan, C.I.: New structure in the energy spectrum of Reggeon quantum mechanics with quartic couplings. Phys. Lett. B 91, 291–295 (1980)

    Google Scholar 

  8. Caliceti, E., Graffi, S., Maioli, M.: Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 75, 51–66 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Scholtz, F.G., Geyer, H.B., Hahne, F.J.W.: Quasi-Hermitian operators in quantum mechanics and the variational principle. Ann. Phys. 213, 74–101 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\cal{PT} \) symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Okuma, N., Kawabata, K., Shiozaki, K., Sato, M.: Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020)

    ADS  MathSciNet  Google Scholar 

  12. Yang, Z., Zhang, K., Fang, C., Hu, J.: Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett. 125, 226402 (2020)

    ADS  MathSciNet  Google Scholar 

  13. Zhang, K., Yang, Z., Fang, C.: Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020)

    ADS  MathSciNet  Google Scholar 

  14. Hamazaki, R., Kawabata, K., Kura, N., Ueda, M.: Universality classes of non-Hermitian random matrices. Phys. Rev. Res. 2, 023286 (2020)

    Google Scholar 

  15. Wang, X.R., Guo, C.X., Du, Q., Kou, S.P.: State-dependent topological invariants and anomalous bulk-boundary correspondence in non-Hermitian topological systems with generalized inversion symmetry. Chin. Phys. Lett. 37, 117303 (2020)

    ADS  Google Scholar 

  16. Li, T., Zhang, Y.S., Yi, W.: Two-dimensional quantum walk with non-Hermitian skin effects. Chin. Phys. Lett. 38, 030301 (2021)

    ADS  Google Scholar 

  17. Lenke, L., Mühlhauser, M., Schmidt, K.P.: High-order series expansion of non-Hermitian quantum spin models. Phys. Rev. B 104, 195137 (2021)

    ADS  Google Scholar 

  18. Guo, A., Salamo, G.J., Christodoulides, D.N., et al.: Observation of \(\cal{PT} \) symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

  19. Chou, T., Mallick, K., Zia, R.K.P.: Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep. Prog. Phys. 74, 116601 (2011)

    ADS  MathSciNet  Google Scholar 

  20. Bertoldi, K., Vitelli, V., Christensen, J., van Martin, H.: Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017)

    ADS  Google Scholar 

  21. Weimann, S., Kremer, M., Plotnik, Y., Lumer, Y., Nolte, S., Makris, K.G., Segev, M., Rechtsman, M.C., Szameit, A.: Topologically protected bound states in photonic parity-time-symmetric crystals. Nat. Mater. 16, 433–438 (2017)

    ADS  Google Scholar 

  22. Longhi, S.: Parity-time symmetry meets photonics: a new twist in non-Hermitian optics. Europhys. Lett. 120, 64001 (2017)

    ADS  Google Scholar 

  23. Lebrat, M., Hausler, S., Fabritius, P., Husmann, D., Corman, L., Esslinger, T.: Quantized conductance through a spin-selective atomic point contact. Phys. Rev. Lett. 123, 193605 (2019)

    ADS  Google Scholar 

  24. Yang, W., Wenquan, L., JiangFeng, D., et al.: Observation of parity-time symmetry breaking in a single-spin system. Science 364, 878–880 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Nishioka, T.: Entanglement entropy: holography and renormalization group. Rev. Mod. Phys. 90, 035007 (2018)

    ADS  MathSciNet  Google Scholar 

  28. Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006)

    ADS  MathSciNet  Google Scholar 

  29. Zhang, Y., Grover, T., Turner, A., Oshikawa, M., Vishwanath, A.: Quasiparticle statistics and braiding from ground-state entanglement. Phys. Rev. B 85, 235151 (2012)

    ADS  Google Scholar 

  30. Osterloh, A., Luigi, A., Falci, G., Rosario, F.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002)

    ADS  Google Scholar 

  31. Hastings, M.B.: Entropy and entanglement in quantum ground states. Phys. Rev. B 76, 035114 (2007)

    ADS  Google Scholar 

  32. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 78, 214414 (2008)

    ADS  Google Scholar 

  33. Brandão, F.G.S.L., Horodecki, M.: An area law for entanglement from exponential decay of correlations. Nat. Phys. 9, 721–726 (2013)

    Google Scholar 

  34. Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. Phys. Rev. Lett. 96, 181602 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Nicola, S.D., Michailidis, A.A., Serbyn, M.: Entanglement view of dynamical quantum phase transitions. Phys. Rev. Lett. 126, 040602 (2021)

    MathSciNet  Google Scholar 

  37. Modak, R., Mandal, B.P.: Eigenstate entanglement entropy in a \(\cal{PT} \)-invariant non-Hermitian system. Phys. Rev. A 103, 062416 (2021)

    ADS  MathSciNet  Google Scholar 

  38. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    ADS  Google Scholar 

  39. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)

    ADS  Google Scholar 

  40. Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011)

    ADS  Google Scholar 

  41. Mehran, E., Mahdavifar, S., Jafari, R.: Induced effects of the Dzyaloshinskii–Moriya interaction on the thermal entanglement in spin-1/2 Heisenberg chains. Phys. Rev. A 89, 042306 (2014)

    ADS  Google Scholar 

  42. Zhang, P.P., Wang, J., Xu, Y.L., Wang, C.Y., Kong, X.M.: Quantum entanglements in mixed-spin XY systems. Phys. A 566, 125643 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Wang, Z., Fang, P.P., Xu, Y.L., Wang, C.Y., Zhang, R.T., Zhang, H., Kong, X.M.: Quantum quench dynamics in XY spin chain with ferromagnetic and antiferromagnetic interactions. Phys. A 581, 126205 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Walborn, S.P., Souto, R.P.H., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement with a single measurement. Nature 440, 1022–1024 (2006)

    ADS  Google Scholar 

  45. Adam, M.K., Tai, M.E., Alexander, L., Matthew, R., Robert, S., Philipp, M.P., Greiner, M.: Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016)

    Google Scholar 

  46. Chang, P.Y., You, J.S., Wen, X., Ryu, S.: Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res. 2, 033069 (2020)

    Google Scholar 

  47. Herviou, L., Regnault, N., Bardarson, J.H.: Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models. SciPost Phys. 7, 069 (2019)

    ADS  MathSciNet  Google Scholar 

  48. Lee, E., Lee, H., Yang, B.J.: Many-body approach to non-Hermitian physics in fermionic systems. Phys. Rev. B 101, 121109 (2020)

    ADS  Google Scholar 

  49. Bácsi, Á., Dóra, B.: Dynamics of entanglement after exceptional quantum quench. Phys. Rev. B 103, 085137 (2021)

    ADS  Google Scholar 

  50. Jian, S.K., Yang, Z.C., Bi, Z., Chen, X.: Yang–Lee edge singularity triggered entanglement transition. Phys. Rev. B 104, L161107 (2021)

    ADS  Google Scholar 

  51. Lakkaraju, L.G.C., Sen, A.: Detection of an unbroken phase of a non-Hermitian system via a Hermitian factorization surface. Phys. Rev. A 104, 052222 (2021)

    ADS  MathSciNet  Google Scholar 

  52. Sadhukhan, D., Prabhu, R., Sen, D.A., Sen, U.: Quantum correlations in quenched disordered spin models: enhanced order from disorder by thermal fluctuations. Phys. Rev. E 93, 032115 (2016)

    ADS  Google Scholar 

  53. Jafari, R., Akbari, A.: Dynamics of quantum coherence and quantum Fisher information after a sudden quench. Phys. Rev. A 101, 062105 (2020)

    ADS  MathSciNet  Google Scholar 

  54. Fel’dman, E.B., Rudavets, M.G.: Exact results on spin dynamics and multiple quantum NMR dynamics in alternating spin-1/2 chains with XY Hamiltonian at high temperatures. JETP Lett. 81, 47–52 (2005)

    ADS  Google Scholar 

  55. Kuznetsova, E.I., Fel’dman, É.B.: Exact solutions in the dynamics of alternating open chains of spins s = 1/2 with the XY Hamiltonian and their application to problems of multiple-quantum dynamics and quantum information theory. J. Exp. Theor. Phys. 102, 882–893 (2006)

    ADS  Google Scholar 

  56. Giorgi, G.L.: Ground-state factorization and quantum phase transition in dimerized spin chains. Phys. Rev. B 79, 060405 (2009)

    ADS  Google Scholar 

  57. Giorgi, G.L.: Spontaneous \(\cal{PT} \) symmetry breaking and quantum phase transitions in dimerized spin chains. Phys. Rev. B 82, 052404 (2010)

    ADS  Google Scholar 

  58. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    ADS  MATH  Google Scholar 

  59. Vidal, G.: Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett. 98, 070201 (2007)

    ADS  Google Scholar 

  60. Ashida, Y., Furukawa, S., Ueda, M.: Parity-time-symmetric quantum critical phenomena. Nat. Commun. 8, 15791 (2017)

    ADS  Google Scholar 

  61. Sternheim, M.M., Walker, J.F.: Non-Hermitian Hamiltonians, decaying states, and perturbation theory. Phys. Rev. C 6, 114–121 (1972)

    ADS  Google Scholar 

  62. Brody, D.C.: Biorthogonal quantum mechanics. J. Phys. A Math. Theor. 47, 035305 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Sousa, J.R.d., Albuquerque, D.F.d., Fittipaldi, I.P.: Tricritical behavior of a Heisenberg model with Dzyaloshinski–Moriya interaction. Phys. Lett. A 191, 275–278 (1994)

  64. Ricardo, d.S.J., Lacerda, F., Fittipaldi, I.P.: Thermal behavior of a Heisenberg model with DM interaction. J. Magn. Magn. Mater. 140–144, 1501–1502 (1995)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants Nos. 11675090 and 11905095; Shandong Provincial Natural Science Foundation, China, under Grant No. ZR202111160185. Y. Li. would like to thank Chun-Yang Wang, Jing Wang, Zhen-Hui Sun, Xiu-Ying Zhang, Qing-Hui Li, and Chuan-Zheng Miao for fruitful discussions and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Mu Kong.

Ethics declarations

Conflict of interest

The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, PP., Hu, LZ. et al. Ground-state and thermal entanglements in non-Hermitian XY system with real and imaginary magnetic fields. Quantum Inf Process 22, 277 (2023). https://doi.org/10.1007/s11128-023-04031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04031-z

Keywords

Navigation