Abstract
In this manuscript, we study the non-Hermitian spin-1/2 XY model in the presence of the alternating, imaginary and transverse magnetic fields. For the two-site spin system, we solve exactly the energy spectrum and phase diagram and also calculate the ground-state and thermal entanglements by using the concept of the concurrence. It is found that the two-site concurrence in the eigenstate which only depends on the imaginary magnetic field \(\eta \) is always equal to one in the region of \(\mathcal{P}\mathcal{T}\) symmetry, while it decreases with \(\eta \) in the \(\mathcal{P}\mathcal{T}\)-symmetric broken region; especially, the first derivative of concurrence shows the non-analytic behavior at the exceptional point, and the same is true in the case of the biorthogonal basis, which indicates that the concurrence can characterize the phase transition in this non-Hermitian system. The interesting thing is that \(\eta \) weakens the thermal entanglement when the system is isotropic and enhances the entanglement when the system belongs to the Ising universality class. For the one-dimensional spin chain, the magnetization and entanglement are further studied by using the two-spin cluster mean-field approximation. The results show that their variations have opposite trends with the magnetic fields. Moreover, the system exists the first-order quantum phase transitions for some anisotropic parameters in the \(\mathcal{P}\mathcal{T}\)-symmetry region, and the entanglement changes suddenly at the quantum phase transition point.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data generated or analyzed during this study are included in this published article.
References
Okołowicz, J., Płoszajczak, M., Rotter, I.: Dynamics of quantum systems embedded in a continuum. Phys. Rep. 374, 271–383 (2003)
Pauli, W.: On Dirac’s new method of field quantization. Rev. Mod. Phys. 15, 175–207 (1943)
Dirac, P.A.M.: Bakerian lecture—the physical interpretation of quantum mechanics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 180, 1–40 (1942)
Lee, T.D., Wick, G.C.: Negative metric and the unitarity of the S-matrix. Nucl. Phys. B 9, 209–243 (1969)
Brower, R.C., Furman, M.A., Moshe, M.: Critical exponents for the Reggeon quantum spin model. Phys. Lett. B 76, 213–219 (1978)
Benjamin, C.H., Stanley, T.J., Tan, C.I.: Complex energy spectra in Reggeon quantum mechanics with quartic interactions. Nucl. Phys. B 171, 392–412 (1980)
Benjamin, C.H., Stanley, T.J., Tan, C.I.: New structure in the energy spectrum of Reggeon quantum mechanics with quartic couplings. Phys. Lett. B 91, 291–295 (1980)
Caliceti, E., Graffi, S., Maioli, M.: Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 75, 51–66 (1980)
Scholtz, F.G., Geyer, H.B., Hahne, F.J.W.: Quasi-Hermitian operators in quantum mechanics and the variational principle. Ann. Phys. 213, 74–101 (1992)
Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\cal{PT} \) symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)
Okuma, N., Kawabata, K., Shiozaki, K., Sato, M.: Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020)
Yang, Z., Zhang, K., Fang, C., Hu, J.: Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett. 125, 226402 (2020)
Zhang, K., Yang, Z., Fang, C.: Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020)
Hamazaki, R., Kawabata, K., Kura, N., Ueda, M.: Universality classes of non-Hermitian random matrices. Phys. Rev. Res. 2, 023286 (2020)
Wang, X.R., Guo, C.X., Du, Q., Kou, S.P.: State-dependent topological invariants and anomalous bulk-boundary correspondence in non-Hermitian topological systems with generalized inversion symmetry. Chin. Phys. Lett. 37, 117303 (2020)
Li, T., Zhang, Y.S., Yi, W.: Two-dimensional quantum walk with non-Hermitian skin effects. Chin. Phys. Lett. 38, 030301 (2021)
Lenke, L., Mühlhauser, M., Schmidt, K.P.: High-order series expansion of non-Hermitian quantum spin models. Phys. Rev. B 104, 195137 (2021)
Guo, A., Salamo, G.J., Christodoulides, D.N., et al.: Observation of \(\cal{PT} \) symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)
Chou, T., Mallick, K., Zia, R.K.P.: Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep. Prog. Phys. 74, 116601 (2011)
Bertoldi, K., Vitelli, V., Christensen, J., van Martin, H.: Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017)
Weimann, S., Kremer, M., Plotnik, Y., Lumer, Y., Nolte, S., Makris, K.G., Segev, M., Rechtsman, M.C., Szameit, A.: Topologically protected bound states in photonic parity-time-symmetric crystals. Nat. Mater. 16, 433–438 (2017)
Longhi, S.: Parity-time symmetry meets photonics: a new twist in non-Hermitian optics. Europhys. Lett. 120, 64001 (2017)
Lebrat, M., Hausler, S., Fabritius, P., Husmann, D., Corman, L., Esslinger, T.: Quantized conductance through a spin-selective atomic point contact. Phys. Rev. Lett. 123, 193605 (2019)
Yang, W., Wenquan, L., JiangFeng, D., et al.: Observation of parity-time symmetry breaking in a single-spin system. Science 364, 878–880 (2019)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)
Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010)
Nishioka, T.: Entanglement entropy: holography and renormalization group. Rev. Mod. Phys. 90, 035007 (2018)
Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006)
Zhang, Y., Grover, T., Turner, A., Oshikawa, M., Vishwanath, A.: Quasiparticle statistics and braiding from ground-state entanglement. Phys. Rev. B 85, 235151 (2012)
Osterloh, A., Luigi, A., Falci, G., Rosario, F.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002)
Hastings, M.B.: Entropy and entanglement in quantum ground states. Phys. Rev. B 76, 035114 (2007)
Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 78, 214414 (2008)
Brandão, F.G.S.L., Horodecki, M.: An area law for entanglement from exponential decay of correlations. Nat. Phys. 9, 721–726 (2013)
Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993)
Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. Phys. Rev. Lett. 96, 181602 (2006)
Nicola, S.D., Michailidis, A.A., Serbyn, M.: Entanglement view of dynamical quantum phase transitions. Phys. Rev. Lett. 126, 040602 (2021)
Modak, R., Mandal, B.P.: Eigenstate entanglement entropy in a \(\cal{PT} \)-invariant non-Hermitian system. Phys. Rev. A 103, 062416 (2021)
Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)
Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)
Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011)
Mehran, E., Mahdavifar, S., Jafari, R.: Induced effects of the Dzyaloshinskii–Moriya interaction on the thermal entanglement in spin-1/2 Heisenberg chains. Phys. Rev. A 89, 042306 (2014)
Zhang, P.P., Wang, J., Xu, Y.L., Wang, C.Y., Kong, X.M.: Quantum entanglements in mixed-spin XY systems. Phys. A 566, 125643 (2021)
Wang, Z., Fang, P.P., Xu, Y.L., Wang, C.Y., Zhang, R.T., Zhang, H., Kong, X.M.: Quantum quench dynamics in XY spin chain with ferromagnetic and antiferromagnetic interactions. Phys. A 581, 126205 (2021)
Walborn, S.P., Souto, R.P.H., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement with a single measurement. Nature 440, 1022–1024 (2006)
Adam, M.K., Tai, M.E., Alexander, L., Matthew, R., Robert, S., Philipp, M.P., Greiner, M.: Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016)
Chang, P.Y., You, J.S., Wen, X., Ryu, S.: Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res. 2, 033069 (2020)
Herviou, L., Regnault, N., Bardarson, J.H.: Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models. SciPost Phys. 7, 069 (2019)
Lee, E., Lee, H., Yang, B.J.: Many-body approach to non-Hermitian physics in fermionic systems. Phys. Rev. B 101, 121109 (2020)
Bácsi, Á., Dóra, B.: Dynamics of entanglement after exceptional quantum quench. Phys. Rev. B 103, 085137 (2021)
Jian, S.K., Yang, Z.C., Bi, Z., Chen, X.: Yang–Lee edge singularity triggered entanglement transition. Phys. Rev. B 104, L161107 (2021)
Lakkaraju, L.G.C., Sen, A.: Detection of an unbroken phase of a non-Hermitian system via a Hermitian factorization surface. Phys. Rev. A 104, 052222 (2021)
Sadhukhan, D., Prabhu, R., Sen, D.A., Sen, U.: Quantum correlations in quenched disordered spin models: enhanced order from disorder by thermal fluctuations. Phys. Rev. E 93, 032115 (2016)
Jafari, R., Akbari, A.: Dynamics of quantum coherence and quantum Fisher information after a sudden quench. Phys. Rev. A 101, 062105 (2020)
Fel’dman, E.B., Rudavets, M.G.: Exact results on spin dynamics and multiple quantum NMR dynamics in alternating spin-1/2 chains with XY Hamiltonian at high temperatures. JETP Lett. 81, 47–52 (2005)
Kuznetsova, E.I., Fel’dman, É.B.: Exact solutions in the dynamics of alternating open chains of spins s = 1/2 with the XY Hamiltonian and their application to problems of multiple-quantum dynamics and quantum information theory. J. Exp. Theor. Phys. 102, 882–893 (2006)
Giorgi, G.L.: Ground-state factorization and quantum phase transition in dimerized spin chains. Phys. Rev. B 79, 060405 (2009)
Giorgi, G.L.: Spontaneous \(\cal{PT} \) symmetry breaking and quantum phase transitions in dimerized spin chains. Phys. Rev. B 82, 052404 (2010)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)
Vidal, G.: Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys. Rev. Lett. 98, 070201 (2007)
Ashida, Y., Furukawa, S., Ueda, M.: Parity-time-symmetric quantum critical phenomena. Nat. Commun. 8, 15791 (2017)
Sternheim, M.M., Walker, J.F.: Non-Hermitian Hamiltonians, decaying states, and perturbation theory. Phys. Rev. C 6, 114–121 (1972)
Brody, D.C.: Biorthogonal quantum mechanics. J. Phys. A Math. Theor. 47, 035305 (2014)
Sousa, J.R.d., Albuquerque, D.F.d., Fittipaldi, I.P.: Tricritical behavior of a Heisenberg model with Dzyaloshinski–Moriya interaction. Phys. Lett. A 191, 275–278 (1994)
Ricardo, d.S.J., Lacerda, F., Fittipaldi, I.P.: Thermal behavior of a Heisenberg model with DM interaction. J. Magn. Magn. Mater. 140–144, 1501–1502 (1995)
Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grants Nos. 11675090 and 11905095; Shandong Provincial Natural Science Foundation, China, under Grant No. ZR202111160185. Y. Li. would like to thank Chun-Yang Wang, Jing Wang, Zhen-Hui Sun, Xiu-Ying Zhang, Qing-Hui Li, and Chuan-Zheng Miao for fruitful discussions and useful comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, Y., Zhang, PP., Hu, LZ. et al. Ground-state and thermal entanglements in non-Hermitian XY system with real and imaginary magnetic fields. Quantum Inf Process 22, 277 (2023). https://doi.org/10.1007/s11128-023-04031-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04031-z