Quantum image encryption scheme using independent bit-plane permutation and Baker map | Quantum Information Processing Skip to main content
Log in

Quantum image encryption scheme using independent bit-plane permutation and Baker map

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum image encryption can take full advantage of superposition and entanglement properties of the qubit to improve efficiency and security. To further enhance the security of image encryption, a novel quantum scheme based on proposed independent bit-plane permutation is presented in this paper. Firstly, the gray-scale image is represented with a bit-plane representation of quantum images model to facilitate subsequent processing. Then, the quantum Baker map (QBM) is applied to each bit-plane to permutate bit positions, which will not only change the corresponding pixel positions but also change pixel values. As the partition parameters and iteration parameters of QBM can be different for different bit-planes, the key space is enlarged. Finally, the permutated image is diffused to obtain encrypted image by quantum controlled XOR operations and recently proposed sine chaotification model. Experimental results and security analysis verify that the proposed quantum image encryption algorithm has good performance in terms of statistical characteristics, key sensitivity, robustness, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Hazer, A., Yildirim, R.: A review of single and multiple optical image encryption techniques. J. Opt. 23, 113501 (2021)

    ADS  Google Scholar 

  2. Li, H.S., Li, C.Y., Chen, X., Xia, H.Y.: Quantum image encryption algorithm based on NASS. Int. J. Theor. Phys. 57, 3745–3760 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Zhou, R.G., Yang, P.L., Liu, X.A., Ian, H.: Quantum color image watermarking based on fast bit-plane scramble and dual embedded. Int. J. Quantum. Inf. 16, 1850060 (2018)

    MATH  Google Scholar 

  4. Zhou, N.R., Pan, S.M., Cheng, S., Zhou, Z.H.: Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing. Opt. Laser. Technol. 82, 121–133 (2016)

    ADS  Google Scholar 

  5. Wang, X.Y., Sun, H.H.: A chaotic image encryption algorithm based on improved Joseph traversal and cyclic shift function. Opt. Laser. Technol. 122, 105854 (2020)

    Google Scholar 

  6. Yang, Y.G., Guan, B.W., Li, J., Li, D., Zhou, Y.H., Shi, W.M.: Image compression-encryption scheme based on fractional order hyper-chaotic systems combined with 2D compressed sensing and DNA encoding. Opt. Laser. Technol. 119, 105661 (2019)

    Google Scholar 

  7. Wang, X.G., Wei, H.Y., Jin, M.X., Xu, B.J., Chen, J.L.: Experimental optical encryption based on random mask encoding and deep learning. Opt. Exp. 30, 11165–11173 (2022)

    Google Scholar 

  8. Chen, L., Gan, W.W., Chen, L.F., Mao, H.D.: Optical encryption technology based on spiral phase coherent superposition and vector beam generation system. Optik 253, 2250035 (2022)

    Google Scholar 

  9. Zhang, R., Xiao, D.: Double image encryption scheme based on compressive sensing and double random phase encoding. Mathematics 10, 1242 (2022)

    Google Scholar 

  10. Chai, X.L., Wang, Y.J., Chen, X.H., Gan, Z.H., Zhang, Y.S.: TPE-GAN: Thumbnail preserving ecryption bsed on GAN with Key. IEEE Signal Proc. Let. 29, 972–976 (2022)

    ADS  Google Scholar 

  11. Jin, M.X., Wang, W.Q., Wang, X.G.: Optical color image cryptosystem based on interference principle and deep learning. Optik 251, 168474 (2022)

    ADS  Google Scholar 

  12. Li, Q., Meng, X.F., Yin, Y.K., Wu, H.Z.: A Multi-Image encryption based on sinusoidal coding frequency multiplexing and deep learning. Sensors 21, 6178 (2021)

    ADS  Google Scholar 

  13. Hu, W.B., Dong, Y.M.: Quantum color image encryption based on a novel 3D chaotic system. J. Appl. Phys. 131, 114402 (2022)

    ADS  Google Scholar 

  14. Wu, W.Q., Wang, Q.: Quantum image encryption based on baker map and 2D logistic map. Int. J. Theor. Phys. 61, 64 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Zhou, N.R., Huang, L.X., Gong, L.H., Zeng, Q.W.: Novel quantum image compression and encryption algorithm based on DQWT and 3D hyper-chaotic Henon map. Quantum Inf. Process. 19, 284 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Zhou, S.H.: A quantum image encryption method based on DNACNot. IEEE Access 8, 178336–178344 (2020)

    Google Scholar 

  17. Waseem, H.M., Khan, M., Shah, T.: Image privacy scheme using quantum spinning and rotation. J. Electron. Imag. 27, 063022 (2018)

    Google Scholar 

  18. Liu, H., Zhao, B., Huang, L.Q.: Quantum image encryption scheme using Arnold transform and S-box scrambling. Entropy 21, 343 (2019)

    ADS  MathSciNet  Google Scholar 

  19. Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)

    MathSciNet  Google Scholar 

  20. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process 12, 3477–3493 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Gong, L.H., He, X.T., Tan, R.C., Zhou, Z.H.: Single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform. Int. J. Theor. Phys. 57, 59–73 (2018)

    MATH  Google Scholar 

  22. Li, X.Z., Chen, W.W., Wang, Y.Q.: Quantum image compression-encryption scheme based on quantum discrete cosine transform. Int. J. Theor. Phys. 57, 2904–2919 (2018)

    MATH  Google Scholar 

  23. Wang, S., Song, X., Niu, X.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. In: Proceedings of Intelligent Data Analysis and its Applications, pp. 243–250 (2014)

  24. Li, H.S., Li, C., Chen, X., Xia, H.: Quantum image encryption based on phase-shift transform and quantum Haar wavelet packet transform. Mod. Phys. Lett. A 34, 1950214 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Song, X.H., Wang, S., Abd El-Latif, A., Niu, X.M.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process 13, 1765–1787 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Abd El-Latif, A.A., Abd-El-Atty, B., Talha, M.: Robust encryption of quantum medical images. IEEE Access 6, 1073–1081 (2018)

    Google Scholar 

  27. Ran, Q.W., Wang, L., Ma, J., Tan, L.Y., Yu, S.Y.: A quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections. Quantum Inf. Process. 17, 188 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Zhou, N.R., Chen, W.W., Yan, X.Y., Wang, Y.Q.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17, 137 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Wang, H., Wang, J., Geng, Y.C., Song, Y., Liu, J.Q.: Quantum image encryption based on iterative framework of frequency-spatial domain transforms. Int. J. Theor. Phys. 56, 3029–3049 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)

    MathSciNet  Google Scholar 

  31. Latorre, J.I.: Image compression and entanglement. Comput. Sci. (2005) https://arxiv.org/abs/quant-ph/0510031. Accessed 23 June 2017

  32. Li, H.S., Zhu, Q.X., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13, 991–1011 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12, 3103–3126 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Sun, B., Iliyasu, A.M., Yan, F., et al.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inf. 17, 404–417 (2013)

    Google Scholar 

  35. Zhu, H.H., Chen, X.B., Yang, Y.X.: A multimode quantum image representation and its encryption scheme. Quantum Inf. Process. 20, 315 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Wang, Z.B., Xu, M.Z., Zhang, Y.N.: Review of quantum image processing. Arch. Comput. Method E. 29, 737–761 (2022)

    MathSciNet  Google Scholar 

  39. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53, 2463–2484 (2014)

    MATH  Google Scholar 

  40. Ma, Y., Zhou, N.R.: Quantum color image compression and encryption algorithm based on Fibonacci transform. Quantum Inf. Process. 22, 39 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14, 1193–1213 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Zhou, N.R., Yan, X.Y., Liang, H.R., Tao, X.Y., Li, G.Y.: Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system. Quantum Inf. Process. 17, 338 (2018)

    ADS  MATH  Google Scholar 

  43. Hou, C.A., Liu, X.B., Feng, S.Y.: Quantum image scrambling algorithm based on discrete Baker map. Mod. Phys. Lett. A 35, 2050145 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Gao, Y., Xie, H., Zhang, J., et al.: A novel quantum image encryption technique based on improved controlled alternated quantum walks and hyperchaotic system. Phys. A 598, 127334 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Shi, J., Zhao, T., Wang, Y., et al.: Chaotic image encryption based on Boson sampling. Adv. Quantum Technol. 6, 2200104 (2022)

    Google Scholar 

  46. Zhou, R.G., Li, Y.B.: Quantum image encryption based on Lorenz hyper-chaotic system. Int. J. Quantum Inf. 18, 2050022 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Hua, Z.Y., Zhou, B.H., Zhou, Y.C.: Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Trans. Ind. Electron. 66, 1273–1284 (2019)

    Google Scholar 

  48. Li, H.S., Chen, X., Xia, H.Y., Liang, Y., Zhou, Z.S.: A quantum image representation based on bitplanes. IEEE Access 6, 62396–62404 (2018)

    Google Scholar 

  49. Alvarez, G., Li, S.: Breaking an encryption scheme based on chaotic baker map. Phys. Lett. A 352, 78–82 (2007)

    ADS  MATH  Google Scholar 

  50. Zhang, Y.: Statistical test criteria for sensitivity indexes of image cryptosystems. Inf. Sci. 550, 313–328 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyj-msxmX0767), in part by the Fundamental Research Funds for the Central Universities (Grant No. SWU-KQ22002), and in part by the National Natural Science Foundation of China (Grant No. 61802037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, C. Quantum image encryption scheme using independent bit-plane permutation and Baker map. Quantum Inf Process 22, 262 (2023). https://doi.org/10.1007/s11128-023-04026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04026-w

Keywords