Optimized quantum leading zero detector circuits | Quantum Information Processing Skip to main content
Log in

Optimized quantum leading zero detector circuits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The algorithms that best demonstrate the potential of quantum computing are Shor’s algorithm and Grover’s algorithm. To this day, new evidence continues to emerge in the form of algorithms or ingenious applications that increase the field of application of this type of computing. However, given the limited number of qubits in current quantum computers, and also the noise problems they currently suffer from, implementing optimized circuits that allow us to take full advantage of the available resources, as well as detecting and correcting the errors caused by this noise, is a priority. In this work we present several leading zero detector circuits for quantum computers and simulators, optimized in terms of noise tolerance and number of qubits. These circuits are a fundamental part in major circuits that perform operations as important and basic in computation as addition and division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020)

    Article  Google Scholar 

  2. Orts, F., Ortega, G., Cucura, A., Filatovas, E., Garzón, E.: Optimal fault-tolerant quantum comparators for image binarization. J. Supercomput. 77, 8433–8444 (2021)

    Article  Google Scholar 

  3. Jones, T., Brown, A., Bush, I., Benjamin, S.: Quest and high performance simulation of quantum computers. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  4. Steiger, D., Häner, T., Troyer, M.: Projectq: an open source software framework for quantum computing. Quantum 2, 49 (2018)

    Article  Google Scholar 

  5. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  6. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  7. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  8. Combarro, E., Ranilla, J., Rúa, I.: Experiments testing the commutativity of finite-dimensional algebras with a quantum adiabatic algorithm. Comput. Math. Methods 1(1), e1009 (2019)

    Article  MathSciNet  Google Scholar 

  9. Bernhardt, C.: Quantum Computing for Everyone. MIT Press, Cambridge (2019)

    Book  Google Scholar 

  10. Nguyen, T., Van Meter, R.: A resource-efficient design for a reversible floating point adder in quantum computing. ACM J. Emerg. Technol. Comput. Syst. (JETC) 11(2), 1–18 (2014)

    Article  Google Scholar 

  11. Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of Clifford+ t circuits via matroid partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1476–1489 (2014)

    Article  Google Scholar 

  12. Thapliyal, H., Muñoz-Coreas, E., Khalus, V.: Quantum circuit designs of carry lookahead adder optimized for T-count, T-depth, and qubits. Sustain. Comput. Inf. Syst. 29, 100457 (2021)

    Google Scholar 

  13. Orts, F., Ortega, G., Garzón, E.: Efficient reversible quantum design of sign-magnitude to two’s complement converters. Quantum Inf. Comput. 20(9–10), 747–765 (2020)

    MathSciNet  Google Scholar 

  14. Oklobdzija, V.: An algorithmic and novel design of a leading zero detector circuit: comparison with logic synthesis. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2(1), 124–128 (1994)

    Article  Google Scholar 

  15. AnanthaLakshmi, A., Sudha, G.: Design of an efficient reversible single precision floating point adder. Int. J. Comput. Intell. Stud. 4(1), 2–30 (2015)

    Google Scholar 

  16. Gayathri, S., Kumar, R., Dhanalakshmi, S., Dooly, G., Duraibabu, D.: T-count optimized quantum circuit designs for single-precision floating-point division. Electronics 10(6), 703 (2021)

    Article  Google Scholar 

  17. Nguyen, T., Van Meter, R.: A space-efficient design for reversible floating point adder in quantum computing. ACM J. Emerg. Technol. Comput. Syst. (2013). https://doi.org/10.1145/2629525

    Article  Google Scholar 

  18. Nandan, D., Kanungo, J., Mahajan, A.: Implementation of leading one detector based on reversible logic for logarithmic arithmetic. Int. J. Comput. Appl. 173(8), 40–45 (2017)

    Google Scholar 

  19. Li, H.-S., Fan, P., Peng, H., Song, S., Long, G.-L.: Multilevel 2-d quantum wavelet transforms. IEEE Trans. Cybern. 52(8), 8467–848 (2022)

    Article  Google Scholar 

  20. Orts, F., Ortega, G., Combarro, E., Garzón, E.: A review on reversible quantum adders. J. Netw. Comput. Appl. 170, 102810 (2020)

    Article  Google Scholar 

  21. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Babbush, R., Gidney, C., Berry, D., Wiebe, N., McClean, J., Paler, A., Fowler, A., Neven, H.: Encoding electronic spectra in quantum circuits with linear t complexity. Phys. Rev. X 8(4), 041015 (2018)

    Google Scholar 

  23. Gidney, C., Ekerå, M.: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021)

    Article  Google Scholar 

  24. Bernstein, D., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 409–441. Springer, Berlin (2019)

  25. Sheng-Xing, Z., Gui-Lu, L., Xiao-Shu, L.: A remote quantum adding machine. Chin. Phys. Lett. 19(11), 1579 (2002)

    Article  ADS  Google Scholar 

  26. Li, H., Fan, P., Xia, H., Peng, H., Long, G.: Efficient quantum arithmetic operation circuits for quantum image processing. Sci. China Phys. Mech. Astron. 63, 1–13 (2020)

    Article  Google Scholar 

  27. Zhou, R., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7(1), 1–17 (2017)

    ADS  Google Scholar 

  28. Wei, A., Naik, P., Harrow, A., Thaler, J.: Quantum algorithms for jet clustering. Phys. Rev. D 101(9), 094015 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Gyongyosi, L., Imre, S.: Quantum circuit design for objective function maximization in gate-model quantum computers. Quantum Inf. Process. 18(7), 1–33 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum Inf. Process. 8(4), 297–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Noorallahzadeh, M., Mosleh, M.: Parity-preserving reversible flip-flops with low quantum cost in nanoscale. J. Supercomput. 76(3), 2206–2238 (2020)

    Article  MATH  Google Scholar 

  32. Noorallahzadeh, M., Mosleh, M.: Efficient designs of reversible latches with low quantum cost. IET Circuits Devices Syst. 13(6), 806–815 (2019)

    Article  MATH  Google Scholar 

  33. Gaur, H., Singh, A., Ghanekar, U.: In-depth comparative analysis of reversible gates for designing logic circuits. Procedia Comput. Sci. 125, 810–817 (2018)

    Article  Google Scholar 

  34. Orts, F., Ortega, G., Garzón, E.: An optimized quantum circuit for converting from sign-magnitude to two’s complement. Quantum Inf. Process. 18(11), 1–14 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gidney, C.: Halving the cost of quantum addition. Quantum 2, 74 (2018)

    Article  Google Scholar 

  36. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(6), 818–830 (2013)

    Article  Google Scholar 

  37. Jones, C.: Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A 87(2), 022328 (2013)

    Article  ADS  Google Scholar 

  38. Selinger, P.: Quantum circuits of t-depth one. Phys. Rev. A 87(4), 042302 (2013)

    Article  ADS  Google Scholar 

  39. Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  ADS  Google Scholar 

  40. Liu, Y., Long, G.L., Sun, Y.: Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates. Int. J. Quantum Inf. 6(03), 447–462 (2008)

    Article  MATH  Google Scholar 

  41. Amy, M., Ross, N.: The phase/state duality in reversible circuit design, arXiv preprint arXiv:2105.13410

  42. Große, D., Wille, R., Dueck, G., Drechsler, R.: Exact synthesis of elementary quantum gate circuits for reversible functions with don’t cares. In: 38th International Symposium on Multiple Valued Logic (ISMVL 2008), IEEE, pp. 214–219 (2008)

Download references

Acknowledgements

This work was supported in part under Grants PID2020-119082RB-C22, PID2021-123461NB-C22, PID2021-123278OB-I00 and MTM-2017-83506-C2-2-P funded by MCIN/AEI/ 10.13039/501100011033; by the Regional Ministry of Junta de Andalucía under the Grants P20_00748, IC-DRUGS-P18-RT-1193, UAL2020-TIC-A2101, and UAL18-TIC-A020-B; by Gobierno del Principado de Asturias under Grant AYUD/2021/50994, and by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Orts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orts, F., Ortega, G., Combarro, E.F. et al. Optimized quantum leading zero detector circuits. Quantum Inf Process 22, 28 (2023). https://doi.org/10.1007/s11128-022-03784-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03784-3

Keywords

Navigation