A hybrid quantum-classical generative adversarial networks algorithm based on inherited layerwise learning with circle-connectivity circuit | Quantum Information Processing Skip to main content
Log in

A hybrid quantum-classical generative adversarial networks algorithm based on inherited layerwise learning with circle-connectivity circuit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum generative adversarial networks (QGANs) have a potential exponential advantage over classical GANs, which has attracted widespread attention. However, it also faces the barren plateau problem, i.e., the gradient of variational quantum circuits (VQCs) initialized with random initial parameters decreases exponentially as the number of circuit layers and parameters increases. In order to solve this problem, a hybrid quantum-classical GANs algorithm based on inherited layerwise learning with circle-connectivity circuit (ILL-QGAN) is proposed. The shallow-depth circuit is gradually added during optimization process, and only subsets of parameters are updated, which reduces the number of parameters and circuit depth in each training step. Besides, the parameters trained from the previous layer are inherited to the next layer, which provides the favorable initial parameters for the later. In addition, in order to offer relatively favorable expressibility and entangling capability, the generator uses a more near-term circuit structure, i.e., circle connectivity, to construct VQCs. Finally, the BAS and handwritten experiments are conducted on PennyLane to show our algorithm can faster converge to the Nash equilibrium point and obtain higher accuracy than existing quantum algorithms. Since the shallow-depth and circle-connectivity circuit are used, our algorithm is preferable for execution on noisy intermediate-scale quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing (ICONIP), pp. 2672–2680. MIT Press, Montreal (2014)

  2. Zhu, J.Y., Krahenbuhl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: European Conference on Computer Vision (ECCV), pp. 597–613. Spring, Berlin (2016). https://doi.org/10.1007/978-3-319-46454-1_36

  3. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z.H., Shi, W.Z.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114. IEEE, USA (2017). https://doi.org/10.1109/CVPR.2017.19

  4. Wang, C.Y., Xu, C., Wang, C.H., Tao, D.C.: Perceptual adversarial networks for image-to-image transformation. IEEE Trans. Image Process. 27(8), 4066–4079 (2017). https://doi.org/10.1109/TIP.2018.2836316

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gao, X., Zhang, Z.Y., Duan, L.M.: A quantum machine learning algorithm based on generative models. Sci. Adv. 4(12), 1–17 (2018). https://doi.org/10.1109/TIP.2018.2836316

    Article  Google Scholar 

  6. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. NPJ. Quantum. Inf. 5(1), 45 (2019). https://doi.org/10.1038/s41534-019-0157-8

    Article  ADS  Google Scholar 

  7. Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 040502 (2018). https://doi.org/10.1103/PhysRevLett.121.040502

    Article  ADS  MathSciNet  Google Scholar 

  8. Situ, H.Z., He, Z.M., Wang, Y.Y., Li, L.Z., Zheng, S.G.: Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2020). https://doi.org/10.1016/j.ins.2020.05.127

    Article  MathSciNet  MATH  Google Scholar 

  9. Romero, J., Aspuru-Guzik, A.: Variational quantum generators: generative adversarial quantum machine learning for continuous distributions. Adv. Quantum Technol. 4(1), 2000003 (2021). https://doi.org/10.1002/qute.202000003

    Article  Google Scholar 

  10. Liu, W.J., Zhang, Y., Deng, Z.L., Zhao, J.J.: A hybrid quantum-classical conditional generative adversarial network algorithm for human-centered paradigm in cloud. EURASIP J. Wirel. Comm. 2021(1), 37 (2021). https://doi.org/10.1186/s13638-021-01898-3

    Article  Google Scholar 

  11. Huang, H.L., Du, Y.X., Gong, M., Zhao, Y.W., Wu, Y.L., Wang, C.Y., Li, S.W., Liang, F.T., Lin, J., Xu, Y., Yang, R., Liu, T.L., Hsich, M.H., Deng, H., Rong, H., Peng, C.Z., Lu, C.Y., Chen, Y.A., Tao, D.C., Zhu, X.B., Pan, J.W.: Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 16(2), 024051 (2021). https://doi.org/10.1103/PhysRevApplied.16.024051

    Article  ADS  Google Scholar 

  12. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commum. 9, 4812 (2018). https://doi.org/10.1038/s41467-018-07090-4

    Article  ADS  Google Scholar 

  13. Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019). https://doi.org/10.22331/q-2019-12-09-214

    Article  Google Scholar 

  14. Volkoff, T., Coles, P.J.: Large gradients via correlation in random parameterized quantum circuits. Quantum Sci. Technol. 6(2), 025008 (2021). https://doi.org/10.1088/2058-9565/abd891

    Article  ADS  Google Scholar 

  15. Skolik, A., Mcclean, J.R., Mohseni, M., van der Smagt, P., Leib, M.: Layerwise learning for quantum neural networks. Quantum Mach. Int. 3(1), 5 (2021). https://doi.org/10.1007/s42484-020-00036-4

    Article  Google Scholar 

  16. Kiani, B.T., Palma, G.D., Marvian, M., Liu, Z.W., Lloyd, S.: Quantum earth mover’s distance: a new approach to learning quantum data (2021). arXiv:2101.03037

  17. Niu, M.Y., Zlokapa, A., Broughton, M., Boixo, S., Mohseni, M., Smelyanskyi, V., Neven, H.: Entangling quantum generative adversarial networks. Phys. Rev. Lett. 128(22), 220505 (2022). https://doi.org/10.1103/PhysRevLett.128.220505

  18. Puchała, Z., Miszczak, J.A.: Symbolic integration with respect to the haar measure on the unitary groups in mathematica. Physics 65(1), 21–27 (2011). https://doi.org/10.1515/bpasts-2017-0003

    Article  Google Scholar 

  19. Zhu, D., Linke, N.M., Benedetti, M., Landsman, K.A., Nguyen, N.H., Alderete, C.H., Perdomo-Ortiz, A., Korda, N., Garfoot, A., Brecque, C., Egan, L., Perdomo, O., Monroe, C.: Training of quantum circuits on a hybrid quantum computer. Sci. Adv. 5(10), 9918 (2019). https://doi.org/10.1126/sciadv.aaw9918

    Article  ADS  Google Scholar 

  20. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2(12), 2000063 (2019). https://doi.org/10.1002/qute.201900070

    Article  Google Scholar 

  21. Hubregtsen, T., Pichlmeier, J., Stecher, P.: Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability. Quantum Mach. Int. 3(1), 9 (2021). https://doi.org/10.1007/s42484-021-00038-w

    Article  Google Scholar 

  22. Goodfellow, I.: NIPS 2016 tutorial: generative adversarial networks (2016). arXiv:1701.00160

  23. Dua, D., Graff, C.: UCI machine learning repository (2017)

  24. PennyLane. https://pennylane.ai/ (2018)

  25. https://github.com/ZhaoJJ0818/ILL-QGAN

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (62071240, 61802175) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhao, J. & Wu, Q. A hybrid quantum-classical generative adversarial networks algorithm based on inherited layerwise learning with circle-connectivity circuit. Quantum Inf Process 21, 372 (2022). https://doi.org/10.1007/s11128-022-03719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03719-y

Keywords

Navigation