Abstract
This report experimentally demonstrates that the theoretical background of the atom–field scenario points out that the NMR quadrupolar Hamiltonian works as an effective Hamiltonian to generate Schrödinger’s cat states in a \(2I+1\) low-dimensional Hilbert space. The versatility of this nuclear spin setup is verified by monitoring the \(^{23}\)Na nucleus of a lyotropic liquid crystal sample at the nematic phase. The quantum state tomography and the Wigner quasiprobability distribution function are performed to characterize the accuracy of the experimental implementation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Buek, V., Knight, P.L.: Quantum interference, superposition states of light, and nonclassical effects. Prog. Opt. 34, 1–158 (1995)
Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A “schrödinger cat’’ superposition state of an atom. Science. 272, 1131–1136 (1996)
Bouwmeester, D., Jian-Wei, P., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature. 390, 575–579 (1997)
Leibfried, D., Knill, E., Seidelin, S., Britton, J., Blakestad, R.B., Chiaverini, J., Dume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R., Wineland, D.J.: Creation of a six-atom schrödinger cat state. Nature. 438, 639–642 (2005)
Delglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J..-M.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature. 455, 510–514 (2008)
Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon schrödinger cat states. Science. 342, 607–610 (2013)
Leek, P.J.: Storing quantum information in schrödinger’s cats. Science. 342, 568–569 (2013)
Barreiro, J.T., Mller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature. 470, 486–491 (2011)
Tiecke, T.G., Thompson, J.D., de Leon, N.P., Liu, L.R., Vuleti, V., Lukin, M.D.: Nanophotonic quantum phase switch with a single atom. Nature. 508, 241–244 (2014)
Agarwal, G.S., Puri, R.R., Singh, R.P.: Atomic schrödinger cat states. Phys. Rev. A. 56(3), 2249–2254 (1997)
Zheng, S.: One-step synthesis of multiatom greenberger-horne-zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)
Klimov, A.B., Saavedra, C.: The dicke model dynamics in a high detuning limit. Phys. Lett. A. 247, 14–20 (1998)
Klimov, A.B., Romero, J.L., Delgado, J., Sánchez-Soto, L.L.: Master equations for effective hamiltonians. J. Opt. B Quantum Semiclassical Opt. 5, 34–39 (2002)
James, D.F.V.: Quantum computation with hot and cold ions: an assessment of proposed schemes. Fortschr. Phys. 48, 823–837 (2000)
Prado, F.O., Luiz, F.S., Villas-Bôas, M., Alcalde, A.M., Duzzioni, E.I., Sanz, L.: Atom-mediated effective interactions between modes of a bimodal cavity. Phys. Rev. A. 84, 053839 (2011)
Auccaise, R., Araujo-Ferreira, A.G., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Spin squeezing in a quadrupolar nuclei nmr system. Phys. Rev. Lett. 114, 043604 (2015)
Gao, W., Lu, C.-Y., Yao, X.-C., Xu, P., Gühne, O., Goebel, A., Chen, Y.-A., Peng, C.-Z., Chen, Z.-B., Pan, J.-W.: Experimental demonstration of a hyper-entangled ten-qubit schrödinger cat state. Nature Phys. 6, 331–335 (2010)
Song, C., Xu, K., Liu, W., Yang, C.-P., Zheng, S.-B., Deng, H., Xie, Q., Huang, K., Guo, Q., Zhang, L., Zhang, P., Xu, D., Zheng, D., Zhu, X., Wang, H., Chen, Y.-A., Lu, C.-Y., Han, S., Pan, J.-W.: 10-Qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017)
Cappellaro, P., Emerson, J., Boulant, N., Ramanathan, C., Lloyd, S., Cory, D.G.: Entanglement assisted metrology. Phys. Rev. Lett. 94, 020502 (2005)
Cohen-Tannoudji, C., Bernard, D., Laloë, F.: Quantum mechanics. Wiley, New York (1977)
Slichter, C. P.: Principles of magnetic resonance, Springer International (1992)
Wasylishen, R.E., Ashbrook, S.E., Wimperis S.: NMR of quadrupolar nuclei in solid materials, John Wiley & Sons Ltd (2012)
Auccaise, R., Teles, J., Bonagamba, T.J., Oliveira, I.S., deAzevedo, E.R., Sarthour, R.S.: NMR quadrupolar system described as Bose-Einstein-condensate-like system. J. Chem. Phys. 130, 144501 (2009)
Estrada, R.A., deAzevedo, E.R., Duzzioni, E.I., Bonagamba, T.J., Moussa, M.H.Y.: Spin coherent states in nmr quadrupolar system: experimental and theoretical applications. Eur. Phys. J. D. 67, 127 (2013)
Araujo-Ferreira, A.G., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Classical bifurcation in a quadrupolar nmr system. Phys. Rev. A. 87, 053605 (2013)
Nie, X., Li, J., Cui, J., Luo, Z., Huang, J., Chen, H., Lee, C., Peng, X., Du, J.-F.: Quantum simulation of interaction blockade in a two-site BoseHubbard system with solid quadrupolar crystal. New J. Phys. 17, 053028 (2015)
Teles, J., Auccaise, R., Rivera-Ascona, C., Araujo-Ferreira, A.G., Andreeta, J.P., Bonagamba, T.J.: Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance. Quantum Inf. Process. 17, 177 (2018)
Perelomov, A.: Generalized coherent states and their applications, text and monographs in physics, Springer-Verlag (1985)
Agarwal, G.S.: Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Phys. Rev. A. 24, 2889–2896 (1981)
Benedict, M.G., Czirják, A.: Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms. Phys. Rev. A. 60, 4034–4044 (1999)
Sánchez-Soto, L.. L., Klimov, A.. B., de la Hoz, P., Leuchs, G.: Quantum versus classical polarization states: when multipoles count. J. Phys. B At. Mol. Opt. Phys. 46, 104011 (2013)
Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, P.: Generating optical schrödinger kittens for quantum information processing. Science. 312, 83–86 (2006)
Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical schrödinger cats from photon number states. Nature. 448, 784–786 (2007)
Leibfried, D., Meekhof, D.M., King, B.E., Monroe, C., Itano, W.M., Wineland, D.J.: Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 77, 4281–4285 (1996)
Teles, J., Rivera-Ascona, C., Polli, R.S., Oliveira-Silva, R., Vidoto, E.L.G., Andreeta, J.P., Bonagamba, T.J.: Experimental implementation of quantum information processing by Zeeman-perturbed nuclear quadrupole resonance. Quantum Inf. Process. 14, 1889–1906 (2015)
Garon, A., Zeier, R., Glaser, S.J.: Visualizing operators of coupled spin systems. Phys. Rev. A. 91, 042122 (2015)
Koczor, B., Zeier, R., Glaser, S.. J.: Continuous phase spaces and the time evolution of spins: star products and spin-weighted spherical harmonics. J. Phys. A Math. Theor. 52, 055302 (2019)
Koczor, B., Zeier, R., Glaser, S.J.: Time evolution of coupled spin systems in a generalized Wigner representation. Ann. Phys. 408, 1–50 (2019)
Teles, J., deAzevedo, E.R., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J.: Quantum state tomography for quadrupolar nuclei using global rotations of the spin system. J. Chem. Phys. 126, 154506 (2007)
Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum theory of angular momentum, World Scientific Publishing Co. Pte. Ltd - A Editora (1988)
Auccaise, R., Teles, J., Sarthour, R.S., Bonagamba, T.J., Oliveira, I.S., deAzevedo, E.R.: A study of the relaxation dynamics in a quadrupolar nmr system using quantum state tomography. J. Magn. Reson. 192, 17–26 (2008)
Quist, P.-O., Halle, B., Furó, I.: Micelle size and order in lyotropic nematic phases from nuclear spin relaxation. J. Chem. Phys. 96, 3875–3891 (1992)
Oliveira, I.S., Bonagamba, T., Sarthour, R., Freitas, J.C., Azevedo, E.: NMR quantum information processing, Elsevier-Amsterdan, E. R. (2007)
Fortunato, E.M., Pravia, M.A., Boulant, N., Teklemariam, G., Havel, T.F., Cory, D.G.: Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing. J. Chem. Phys. 116, 7599–7606 (2002)
Jin, G.-R., Kim, S.W.: Spin squeezing and maximal-squeezing time. Phys. Rev. A. 76, 043621 (2007)
Neergaard-Nielsen, J.S., Nielsen, B.M., Hettich, C., Mølmer, K., Polzik, E.S.: Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006)
Lücke, B., Peise, J., Vitagliano, G., Arlt, J., Santos, L., Tóth, G., Klempt, C.: Detecting multiparticle entanglement of Dicke states. Phys. Rev. Lett. 112, 155304 (2014)
Kampermann, H., Veeman, W.S.: Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance. J. Chem. Phys. 122, 214108 (2005)
Yusa, G., Muraki, K., Takashina, K., Hashimoto, K., Hirayama, Y.: Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature. 434, 1001–1005 (2005)
Miranowicz, A., Özdemir, ŞK., Bajer, J., Yusa, G., Imoto, N., Hirayama, Y., Nori, F.: Quantum state tomography of large nuclear spins in a semiconductor quantum well: Optimal robustness against errors as quantified by condition numbers. Phys. Rev. B. 92, 075312 (2015)
Hendrickx, N.W., Lawrie, W.I.L., Russ, M., van Riggelen, F., de Snoo, S.L., Schouten, R.N., Sammak, A., Scappucci, G., Veldhorst, M.: A four-qubit germanium quantum processor. Nature. 591, 580–585 (2021)
Glenn, D.R., Bucher, D.B., Lee, J., Lukin, M.D., Park, H., Walsworth, R.L.: High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature. 555, 351–354 (2018)
Dutt, M.V.G., Childress, L., Jiang, L., Togan, E., Maze, J., Jelezko, F., Zibrov, A.S., Hemmer, P.R., Lukin, M.D.: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science. 316, 1312–1316 (2007)
Aiello, C.D., Hirose, M., Cappellaro, P.: Composite-pulse magnetometry with a solid-state quantum sensor. Nature Commun. 4, 1419 (2013)
Kong, F., Ju, C., Liu, Y., Lei, C., Wang, M., Kong, X., Wang, P.-F., Huang, P., Li, Z., Shi, F., Jiang, L., Du, J.-F.: Direct measurement of topological numbers with spins in diamond. Phys. Rev. Lett. 117, 060503 (2016)
Rose, B.C., Huang, D., Zhang, Z.-H., Stevenson, P., Tyryshkin, A.M., Sangtawesin, S., Srinivasan, S., Loudin, L., Markham, M.L., Edmonds, A.M., Twitchen, D.J., Lyon, S.A., de Leon, N.P.: Observation of an environmentally insensitive solid-state spin defect in diamond. Science. 361, 60–63 (2018)
Das, R., Kumar, A.: Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: implementation of a quantum algorithm. Phys. Rev. A. 68, 032304 (2003)
Hacker, B., Welte, S., Daiss, S., Shaukat, A., Ritter, S., Li, L., Rempe, G.: Deterministic creation of entangled atom-light schrödinger-cat states. Nature Photonics. 13, 110–115 (2019)
Omran, A., Levine, H., Keesling, A., Semeghini, G., Wang, T.T., Ebadi, S., Bernien, H., Zibrov, A.S., Pichler, H., Choi, S., Cui, J., Rossignolo, M., Rembold, P., Montangero, S., Calarco, T., Endres, M., Greiner, M., Vuletić, V., Lukin, M.D.: Generation and manipulation of schrödinger cat states in Rydberg atom arrays. Science. 365, 570–574 (2019)
Gati, R., Oberthaler, M.K.: A bosonic Josephson junction. J. Phys. B. 40, R61–R89 (2007)
Acknowledgements
The authors acknowledge the National Institute of Science and Technology for Quantum Information (INCT-QI). A.C.S.L. acknowledges CNPq (142118/2018-4). E.L.O. acknowledges CNPq (140215/2015-8). T.J.B. acknowledges financial support from CNPq (308076/2018-4) and FAPESP (2012/02208-5). R.A. acknowledges CNPq (309023/2014-9, 459134/2014-0). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A theoretical procedures
Appendix A theoretical procedures
1.1 A.1 The quadrupolar Hamiltonian
The quadrupolar Hamiltonian is the generator of the cat state. In this appendix, more details and explanations about the origin of this important quantum state are presented. The nature of the quadrupolar coupling has an electrical source [21, 22], because it arises from the interaction of any distribution of positive charges on the atomic nuclei (the black nonregular geometric volume in Fig. 1d) with an effective electric field gradient generated by the charges of the molecule itself or its neighbors (the green ellipsoid in Fig. 1d). The best formalism to explain this type of interaction is detailed in Chapter 10 of Ref. [21] and here is presented the main aspects of this theory.
From the fundamentals of the electromagnetism, the electric potential energy of any charge distribution \( \varrho \left( \mathbf {r}\right) \) submitted to an electric potential \( V\left( \mathbf {r}\right) \) is denoted by:
As a matter of fact, the phenomenon is reduced to a small spatial arrangement of particles (the nucleus); it enables applying the Taylor’s series definition and rewriting the electric potential around the origin of any coordinate system up to second-order expansion and neglecting the higher ones. From this, expansion emerges the physical interpretation of each term, such that the zero-order term represents an energy offset; the first-order term represents the energy of the electrical dipole moment of the nucleus such that at the stationary equilibrium the average electric field around the nucleus is null; the second-order term defines the quadrupolar energy contribution as denoted by:
This energy contribution is described in its operator representation applying the quantum mechanical notation of operators, the irreducible tensor operators, the Clebsch–Gordan coefficients and the Wigner–Eckart theorem such that the quadrupolar energy contribution of Eq. (22) is represented by:
where e is the elemental charge, Q is the quadrupole moment of the nucleus, \(V_{x_{j},x_{k}}=\left. \frac{\partial ^{2}\left( V\left( \mathbf {r} \right) \right) }{\partial x_{j}\partial x_{k}}\right| _{\mathbf {r}= \mathbf {0}}\) with \(x_{j},x_{k} = x,y,z\) and \({\hat{\mathbf {I}}}^{2} = {\hat{\mathbf {I}}}_{x}^{2} + \hat{\mathbf { I}}_{y}^{2}+{\hat{\mathbf {I}}}_{z}^{2}\). This Hamiltonian related at any set of principal axes system of coordinates satisfies the property of \(V_{x_{j},x_{k}}=0\) for \(x_{j} \ne x_{k}\), and using the Laplace’s equation \(V_{x,x}+V_{y,y}+V_{z,z}=0\), the Hamiltonian is rewritten as:
where \(\ \omega _{Q}=\frac{eQV_{z,z}}{I\left( 2I-1\right) \hbar }\) defines the quadrupolar angular frequency and \(\eta =\frac{V_{x,x}-V_{y,y}}{V_{z,z}}\) defines an asymmetry parameter.
The lyotropic liquid crystal used in this experimental implementation (see Fig. 1b) follows a spatial arrangement with the molecules axis oriented along the strong static magnetic field. For this setup, the value of the asymmetry parameter is null, and the Hamiltonian of the quadrupolar contribution is:
This Hamiltonian characterizes the quadrupolar energy contribution at the NMR Hamiltonian of Eq. (7) of the main text.
Rights and permissions
About this article
Cite this article
Consuelo-Leal, A., Araujo-Ferreira, A.G., Vidoto, E.L.G. et al. NMR Hamiltonian as an effective Hamiltonian to generate Schrödinger’s cat states. Quantum Inf Process 21, 265 (2022). https://doi.org/10.1007/s11128-022-03608-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03608-4