NMR Hamiltonian as an effective Hamiltonian to generate Schrödinger’s cat states | Quantum Information Processing Skip to main content

Advertisement

Log in

NMR Hamiltonian as an effective Hamiltonian to generate Schrödinger’s cat states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This report experimentally demonstrates that the theoretical background of the atom–field scenario points out that the NMR quadrupolar Hamiltonian works as an effective Hamiltonian to generate Schrödinger’s cat states in a \(2I+1\) low-dimensional Hilbert space. The versatility of this nuclear spin setup is verified by monitoring the \(^{23}\)Na nucleus of a lyotropic liquid crystal sample at the nematic phase. The quantum state tomography and the Wigner quasiprobability distribution function are performed to characterize the accuracy of the experimental implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Buek, V., Knight, P.L.: Quantum interference, superposition states of light, and nonclassical effects. Prog. Opt. 34, 1–158 (1995)

    Article  ADS  Google Scholar 

  2. Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A “schrödinger cat’’ superposition state of an atom. Science. 272, 1131–1136 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bouwmeester, D., Jian-Wei, P., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature. 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  4. Leibfried, D., Knill, E., Seidelin, S., Britton, J., Blakestad, R.B., Chiaverini, J., Dume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R., Wineland, D.J.: Creation of a six-atom schrödinger cat state. Nature. 438, 639–642 (2005)

    Article  ADS  Google Scholar 

  5. Delglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J..-M.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature. 455, 510–514 (2008)

    Article  ADS  Google Scholar 

  6. Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon schrödinger cat states. Science. 342, 607–610 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Leek, P.J.: Storing quantum information in schrödinger’s cats. Science. 342, 568–569 (2013)

    Article  ADS  Google Scholar 

  8. Barreiro, J.T., Mller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature. 470, 486–491 (2011)

    Article  ADS  Google Scholar 

  9. Tiecke, T.G., Thompson, J.D., de Leon, N.P., Liu, L.R., Vuleti, V., Lukin, M.D.: Nanophotonic quantum phase switch with a single atom. Nature. 508, 241–244 (2014)

    Article  ADS  Google Scholar 

  10. Agarwal, G.S., Puri, R.R., Singh, R.P.: Atomic schrödinger cat states. Phys. Rev. A. 56(3), 2249–2254 (1997)

    Article  ADS  Google Scholar 

  11. Zheng, S.: One-step synthesis of multiatom greenberger-horne-zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)

    Article  ADS  Google Scholar 

  12. Klimov, A.B., Saavedra, C.: The dicke model dynamics in a high detuning limit. Phys. Lett. A. 247, 14–20 (1998)

    Article  ADS  Google Scholar 

  13. Klimov, A.B., Romero, J.L., Delgado, J., Sánchez-Soto, L.L.: Master equations for effective hamiltonians. J. Opt. B Quantum Semiclassical Opt. 5, 34–39 (2002)

    Article  ADS  Google Scholar 

  14. James, D.F.V.: Quantum computation with hot and cold ions: an assessment of proposed schemes. Fortschr. Phys. 48, 823–837 (2000)

    Article  Google Scholar 

  15. Prado, F.O., Luiz, F.S., Villas-Bôas, M., Alcalde, A.M., Duzzioni, E.I., Sanz, L.: Atom-mediated effective interactions between modes of a bimodal cavity. Phys. Rev. A. 84, 053839 (2011)

    Article  ADS  Google Scholar 

  16. Auccaise, R., Araujo-Ferreira, A.G., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Spin squeezing in a quadrupolar nuclei nmr system. Phys. Rev. Lett. 114, 043604 (2015)

    Article  ADS  Google Scholar 

  17. Gao, W., Lu, C.-Y., Yao, X.-C., Xu, P., Gühne, O., Goebel, A., Chen, Y.-A., Peng, C.-Z., Chen, Z.-B., Pan, J.-W.: Experimental demonstration of a hyper-entangled ten-qubit schrödinger cat state. Nature Phys. 6, 331–335 (2010)

    Article  ADS  Google Scholar 

  18. Song, C., Xu, K., Liu, W., Yang, C.-P., Zheng, S.-B., Deng, H., Xie, Q., Huang, K., Guo, Q., Zhang, L., Zhang, P., Xu, D., Zheng, D., Zhu, X., Wang, H., Chen, Y.-A., Lu, C.-Y., Han, S., Pan, J.-W.: 10-Qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017)

    Article  ADS  Google Scholar 

  19. Cappellaro, P., Emerson, J., Boulant, N., Ramanathan, C., Lloyd, S., Cory, D.G.: Entanglement assisted metrology. Phys. Rev. Lett. 94, 020502 (2005)

    Article  ADS  Google Scholar 

  20. Cohen-Tannoudji, C., Bernard, D., Laloë, F.: Quantum mechanics. Wiley, New York (1977)

    MATH  Google Scholar 

  21. Slichter, C. P.: Principles of magnetic resonance, Springer International (1992)

  22. Wasylishen, R.E., Ashbrook, S.E., Wimperis S.: NMR of quadrupolar nuclei in solid materials, John Wiley & Sons Ltd (2012)

  23. Auccaise, R., Teles, J., Bonagamba, T.J., Oliveira, I.S., deAzevedo, E.R., Sarthour, R.S.: NMR quadrupolar system described as Bose-Einstein-condensate-like system. J. Chem. Phys. 130, 144501 (2009)

    Article  ADS  Google Scholar 

  24. Estrada, R.A., deAzevedo, E.R., Duzzioni, E.I., Bonagamba, T.J., Moussa, M.H.Y.: Spin coherent states in nmr quadrupolar system: experimental and theoretical applications. Eur. Phys. J. D. 67, 127 (2013)

    Article  ADS  Google Scholar 

  25. Araujo-Ferreira, A.G., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Classical bifurcation in a quadrupolar nmr system. Phys. Rev. A. 87, 053605 (2013)

    Article  ADS  Google Scholar 

  26. Nie, X., Li, J., Cui, J., Luo, Z., Huang, J., Chen, H., Lee, C., Peng, X., Du, J.-F.: Quantum simulation of interaction blockade in a two-site BoseHubbard system with solid quadrupolar crystal. New J. Phys. 17, 053028 (2015)

    Article  ADS  Google Scholar 

  27. Teles, J., Auccaise, R., Rivera-Ascona, C., Araujo-Ferreira, A.G., Andreeta, J.P., Bonagamba, T.J.: Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance. Quantum Inf. Process. 17, 177 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Perelomov, A.: Generalized coherent states and their applications, text and monographs in physics, Springer-Verlag (1985)

  29. Agarwal, G.S.: Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Phys. Rev. A. 24, 2889–2896 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. Benedict, M.G., Czirják, A.: Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms. Phys. Rev. A. 60, 4034–4044 (1999)

    Article  ADS  Google Scholar 

  31. Sánchez-Soto, L.. L., Klimov, A.. B., de la Hoz, P., Leuchs, G.: Quantum versus classical polarization states: when multipoles count. J. Phys. B At. Mol. Opt. Phys. 46, 104011 (2013)

    Article  ADS  Google Scholar 

  32. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, P.: Generating optical schrödinger kittens for quantum information processing. Science. 312, 83–86 (2006)

    Article  ADS  Google Scholar 

  33. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical schrödinger cats from photon number states. Nature. 448, 784–786 (2007)

    Article  ADS  Google Scholar 

  34. Leibfried, D., Meekhof, D.M., King, B.E., Monroe, C., Itano, W.M., Wineland, D.J.: Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 77, 4281–4285 (1996)

    Article  ADS  Google Scholar 

  35. Teles, J., Rivera-Ascona, C., Polli, R.S., Oliveira-Silva, R., Vidoto, E.L.G., Andreeta, J.P., Bonagamba, T.J.: Experimental implementation of quantum information processing by Zeeman-perturbed nuclear quadrupole resonance. Quantum Inf. Process. 14, 1889–1906 (2015)

    Article  ADS  MATH  Google Scholar 

  36. Garon, A., Zeier, R., Glaser, S.J.: Visualizing operators of coupled spin systems. Phys. Rev. A. 91, 042122 (2015)

    Article  ADS  Google Scholar 

  37. Koczor, B., Zeier, R., Glaser, S.. J.: Continuous phase spaces and the time evolution of spins: star products and spin-weighted spherical harmonics. J. Phys. A Math. Theor. 52, 055302 (2019)

    Article  ADS  MATH  Google Scholar 

  38. Koczor, B., Zeier, R., Glaser, S.J.: Time evolution of coupled spin systems in a generalized Wigner representation. Ann. Phys. 408, 1–50 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Teles, J., deAzevedo, E.R., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J.: Quantum state tomography for quadrupolar nuclei using global rotations of the spin system. J. Chem. Phys. 126, 154506 (2007)

    Article  ADS  Google Scholar 

  40. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum theory of angular momentum, World Scientific Publishing Co. Pte. Ltd - A Editora (1988)

  41. Auccaise, R., Teles, J., Sarthour, R.S., Bonagamba, T.J., Oliveira, I.S., deAzevedo, E.R.: A study of the relaxation dynamics in a quadrupolar nmr system using quantum state tomography. J. Magn. Reson. 192, 17–26 (2008)

    Article  ADS  Google Scholar 

  42. Quist, P.-O., Halle, B., Furó, I.: Micelle size and order in lyotropic nematic phases from nuclear spin relaxation. J. Chem. Phys. 96, 3875–3891 (1992)

    Article  ADS  Google Scholar 

  43. Oliveira, I.S., Bonagamba, T., Sarthour, R., Freitas, J.C., Azevedo, E.: NMR quantum information processing, Elsevier-Amsterdan, E. R. (2007)

  44. Fortunato, E.M., Pravia, M.A., Boulant, N., Teklemariam, G., Havel, T.F., Cory, D.G.: Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing. J. Chem. Phys. 116, 7599–7606 (2002)

    Article  ADS  Google Scholar 

  45. Jin, G.-R., Kim, S.W.: Spin squeezing and maximal-squeezing time. Phys. Rev. A. 76, 043621 (2007)

    Article  ADS  Google Scholar 

  46. Neergaard-Nielsen, J.S., Nielsen, B.M., Hettich, C., Mølmer, K., Polzik, E.S.: Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006)

    Article  ADS  Google Scholar 

  47. Lücke, B., Peise, J., Vitagliano, G., Arlt, J., Santos, L., Tóth, G., Klempt, C.: Detecting multiparticle entanglement of Dicke states. Phys. Rev. Lett. 112, 155304 (2014)

    Article  ADS  Google Scholar 

  48. Kampermann, H., Veeman, W.S.: Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance. J. Chem. Phys. 122, 214108 (2005)

    Article  ADS  Google Scholar 

  49. Yusa, G., Muraki, K., Takashina, K., Hashimoto, K., Hirayama, Y.: Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature. 434, 1001–1005 (2005)

    Article  ADS  Google Scholar 

  50. Miranowicz, A., Özdemir, ŞK., Bajer, J., Yusa, G., Imoto, N., Hirayama, Y., Nori, F.: Quantum state tomography of large nuclear spins in a semiconductor quantum well: Optimal robustness against errors as quantified by condition numbers. Phys. Rev. B. 92, 075312 (2015)

    Article  ADS  Google Scholar 

  51. Hendrickx, N.W., Lawrie, W.I.L., Russ, M., van Riggelen, F., de Snoo, S.L., Schouten, R.N., Sammak, A., Scappucci, G., Veldhorst, M.: A four-qubit germanium quantum processor. Nature. 591, 580–585 (2021)

    Article  ADS  Google Scholar 

  52. Glenn, D.R., Bucher, D.B., Lee, J., Lukin, M.D., Park, H., Walsworth, R.L.: High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature. 555, 351–354 (2018)

    Article  ADS  Google Scholar 

  53. Dutt, M.V.G., Childress, L., Jiang, L., Togan, E., Maze, J., Jelezko, F., Zibrov, A.S., Hemmer, P.R., Lukin, M.D.: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science. 316, 1312–1316 (2007)

    Article  Google Scholar 

  54. Aiello, C.D., Hirose, M., Cappellaro, P.: Composite-pulse magnetometry with a solid-state quantum sensor. Nature Commun. 4, 1419 (2013)

    Article  ADS  Google Scholar 

  55. Kong, F., Ju, C., Liu, Y., Lei, C., Wang, M., Kong, X., Wang, P.-F., Huang, P., Li, Z., Shi, F., Jiang, L., Du, J.-F.: Direct measurement of topological numbers with spins in diamond. Phys. Rev. Lett. 117, 060503 (2016)

    Article  ADS  Google Scholar 

  56. Rose, B.C., Huang, D., Zhang, Z.-H., Stevenson, P., Tyryshkin, A.M., Sangtawesin, S., Srinivasan, S., Loudin, L., Markham, M.L., Edmonds, A.M., Twitchen, D.J., Lyon, S.A., de Leon, N.P.: Observation of an environmentally insensitive solid-state spin defect in diamond. Science. 361, 60–63 (2018)

    Article  ADS  Google Scholar 

  57. Das, R., Kumar, A.: Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: implementation of a quantum algorithm. Phys. Rev. A. 68, 032304 (2003)

    Article  ADS  Google Scholar 

  58. Hacker, B., Welte, S., Daiss, S., Shaukat, A., Ritter, S., Li, L., Rempe, G.: Deterministic creation of entangled atom-light schrödinger-cat states. Nature Photonics. 13, 110–115 (2019)

    Article  ADS  Google Scholar 

  59. Omran, A., Levine, H., Keesling, A., Semeghini, G., Wang, T.T., Ebadi, S., Bernien, H., Zibrov, A.S., Pichler, H., Choi, S., Cui, J., Rossignolo, M., Rembold, P., Montangero, S., Calarco, T., Endres, M., Greiner, M., Vuletić, V., Lukin, M.D.: Generation and manipulation of schrödinger cat states in Rydberg atom arrays. Science. 365, 570–574 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  60. Gati, R., Oberthaler, M.K.: A bosonic Josephson junction. J. Phys. B. 40, R61–R89 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Institute of Science and Technology for Quantum Information (INCT-QI). A.C.S.L. acknowledges CNPq (142118/2018-4). E.L.O. acknowledges CNPq (140215/2015-8). T.J.B. acknowledges financial support from CNPq (308076/2018-4) and FAPESP (2012/02208-5). R.A. acknowledges CNPq (309023/2014-9, 459134/2014-0). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Consuelo-Leal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A theoretical procedures

Appendix A theoretical procedures

1.1 A.1 The quadrupolar Hamiltonian

The quadrupolar Hamiltonian is the generator of the cat state. In this appendix, more details and explanations about the origin of this important quantum state are presented. The nature of the quadrupolar coupling has an electrical source [21, 22], because it arises from the interaction of any distribution of positive charges on the atomic nuclei (the black nonregular geometric volume in Fig. 1d) with an effective electric field gradient generated by the charges of the molecule itself or its neighbors (the green ellipsoid in Fig. 1d). The best formalism to explain this type of interaction is detailed in Chapter 10 of Ref. [21] and here is presented the main aspects of this theory.

From the fundamentals of the electromagnetism, the electric potential energy of any charge distribution \( \varrho \left( \mathbf {r}\right) \) submitted to an electric potential \( V\left( \mathbf {r}\right) \) is denoted by:

$$\begin{aligned} E=\int \varrho \left( \mathbf {r}\right) V\left( \mathbf {r}\right) d^{3} \mathbf {r}\text {.} \end{aligned}$$
(21)

As a matter of fact, the phenomenon is reduced to a small spatial arrangement of particles (the nucleus); it enables applying the Taylor’s series definition and rewriting the electric potential around the origin of any coordinate system up to second-order expansion and neglecting the higher ones. From this, expansion emerges the physical interpretation of each term, such that the zero-order term represents an energy offset; the first-order term represents the energy of the electrical dipole moment of the nucleus such that at the stationary equilibrium the average electric field around the nucleus is null; the second-order term defines the quadrupolar energy contribution as denoted by:

$$\begin{aligned} E_{Q} = \sum _{x_{j},x_{k}=x,y,z}\left. \frac{\partial ^{2}\left( V\left( \mathbf {r}\right) \right) }{\partial x_{j}\partial x_{k}} \right| _{\mathbf {r}=\mathbf {0}}\int x_{j}x_{k}\varrho \left( \mathbf {r} \right) d^{3}\mathbf {r}\text {.} \end{aligned}$$
(22)

This energy contribution is described in its operator representation applying the quantum mechanical notation of operators, the irreducible tensor operators, the Clebsch–Gordan coefficients and the Wigner–Eckart theorem such that the quadrupolar energy contribution of Eq. (22) is represented by:

$$\begin{aligned} \hat{ \mathcal {H}}_{Q} = \sum _{x_{j},x_{k}}\frac{eQV_{x_{j},x_{k}}}{6I\left( 2I-1\right) } \left( \frac{3}{2}\left( {\hat{\mathbf {I}}}_{x_{j}}{\hat{\mathbf {I}}}_{x_{k}}+ {\hat{\mathbf {I}}}_{x_{k}}{\hat{\mathbf {I}}}_{x_{j}}\right) -\delta _{x_{j},x_{k}}{\hat{\mathbf {I}}}^{2}\right) \text {,} \end{aligned}$$

where e is the elemental charge, Q is the quadrupole moment of the nucleus, \(V_{x_{j},x_{k}}=\left. \frac{\partial ^{2}\left( V\left( \mathbf {r} \right) \right) }{\partial x_{j}\partial x_{k}}\right| _{\mathbf {r}= \mathbf {0}}\) with \(x_{j},x_{k} = x,y,z\) and \({\hat{\mathbf {I}}}^{2} = {\hat{\mathbf {I}}}_{x}^{2} + \hat{\mathbf { I}}_{y}^{2}+{\hat{\mathbf {I}}}_{z}^{2}\). This Hamiltonian related at any set of principal axes system of coordinates satisfies the property of \(V_{x_{j},x_{k}}=0\) for \(x_{j} \ne x_{k}\), and using the Laplace’s equation \(V_{x,x}+V_{y,y}+V_{z,z}=0\), the Hamiltonian is rewritten as:

$$\begin{aligned} {\hat{\mathcal {H}}}_{Q}=\frac{\hbar \omega _{Q}}{6 }\left( \left( 3 {\hat{\mathbf {I}}}_{z}^{2}-{\hat{\mathbf {I}}}^{2}\right) +\eta \left( \hat{ \mathbf {I}}_{x}^{2}-{\hat{\mathbf {I}}}_{y}^{2}\right) \right) \text {,} \end{aligned}$$
(23)

where \(\ \omega _{Q}=\frac{eQV_{z,z}}{I\left( 2I-1\right) \hbar }\) defines the quadrupolar angular frequency and \(\eta =\frac{V_{x,x}-V_{y,y}}{V_{z,z}}\) defines an asymmetry parameter.

The lyotropic liquid crystal used in this experimental implementation (see Fig. 1b) follows a spatial arrangement with the molecules axis oriented along the strong static magnetic field. For this setup, the value of the asymmetry parameter is null, and the Hamiltonian of the quadrupolar contribution is:

$$\begin{aligned} {\hat{\mathcal {H}}}_{Q}=\hbar \frac{\omega _{Q}}{6}\left( 3{\hat{\mathbf {I}}} _{z}^{2}-{\hat{\mathbf {I}}}^{2}\right) \text {.} \end{aligned}$$
(24)

This Hamiltonian characterizes the quadrupolar energy contribution at the NMR Hamiltonian of Eq. (7) of the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consuelo-Leal, A., Araujo-Ferreira, A.G., Vidoto, E.L.G. et al. NMR Hamiltonian as an effective Hamiltonian to generate Schrödinger’s cat states. Quantum Inf Process 21, 265 (2022). https://doi.org/10.1007/s11128-022-03608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03608-4

Keywords

Navigation