Abstract
The Hamiltonian corrections induced by the action of coherent driving forces are often used to fight dissipative and decoherence mechanisms in experiments. For this reason, in the cases of two exactly solvable decoherence models, we propose a scheme for changing the quantum average speed of an open system by controlling an external unitary coherent driving Hamiltonian on the system. For the Markovian dynamics process, with a judicious choice of the coherent driving parameters, the tightness of quantum speed limit of the dynamics process can be weakened. That is to say, we may drive the open system to the quantum speedup evolution. And in the non-Markovian regime, the original quantum speedup dynamics may be brought to the greater degree of speedup by adding the coherent driving. Somewhat contrary to the previous speedup scenarios by the controllable non-Markovianity, the changes in the excited population and coherence caused by the coherent driving are the intrinsic physical reason for quantum speedup in our scheme.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 249–254 (1945)
Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Nuovo Cimento A 16, 232–240 (1973)
Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697–1700 (1990)
Vaidman, L.: Minimum time for the evolution to an orthogonal quantum state. Am. J. Phys. 60, 182–183 (1992)
Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188–195 (1998)
Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)
Jones, P.J., Kok, P.: Geometric derivation of the quantum speed limit. Phys. Rev. A 82, 022107 (2010)
Zwierz, M.: Comment on “Geometric derivation of the quantum speed limit”. Phys. Rev. A 86, 016101 (2012)
Deffner, S., Lutz, E.: Energy-time uncertainty relation for driven quantum systems. J. Phys. A: Math. Theor. 46, 335302 (2013)
Pfeifer, P.: How fast can a quantum state change with time? Phys. Rev. Lett. 70, 3365 (1993)
Pfeifer, P., Fröhlich, J.: Generalized time-energy uncertainty relations and bounds on lifetimes of resonances. Rev. Mod. Phys. 67, 759 (1995)
Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)
del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)
Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)
Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 4890 (2014)
Xu, Z.Y., Luo, S., Yang, W.L., Liu, C., Zhu, S.Q.: Quantum speedup in a memory environment. Phys. Rev. A 89, 012307 (2014)
Deffner, S.: Optimal control of a qubit in an optical cavity. J. Phys. B 47, 145502 (2014)
Pires, D.P., Cianciaruso, M., Celeri, L.C., Adesso, G., Soares-Pinto, D.O.: Generalized geometric quantum speed limits. Phys. Rev. X 6, 021031 (2016)
Wu, S.X., Yu, C.S.: Quantum speed limit for a mixed initial state. Phys. Rev. A 98, 042132 (2018)
Campaioli, F., Pollock, F.A., Binder, F.C., Modi, K.: Tightening quantum speed limits for almost all states. Phys. Rev. Lett. 120, 060409 (2018)
Campaioli, F., Pollock, F.A., Binder, F.C., Modi, K.: Tight, robust, and feasible quantum speed limits for open dynamics. Quantum 3, 168 (2019)
Shanahan, B., Chenu, A., Margolus, N., del Campo, A.: Quantum speed limits across the quantum-to-classical transition. Phys. Rev. Lett. 120, 070401 (2018)
Okuyama, M., Ohzeki, M.: Quantum speed limit is not quantum. Phys. Rev. Lett. 120, 070402 (2018)
Sun, S.N., Zheng, Y.J.: Distinct bound of the quantum speed limit via the gauge invariant distance. Phys. Rev. Lett. 123, 180403 (2019)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)
Bekenstein, J.D.: Energy cost of information transfer. Phys. Rev. Lett. 46, 623–626 (1981)
Mukherjee, V., Carlini, A., Mari, A., Caneva, T., Montangero, S., Calarco, T., Fazio, R., Giovannetti, V.: Speeding up and slowing down the relaxation of a qubit by optimal control. Phys. Rev. A 88, 062326 (2013)
Hegerfeldt, G.C.: Driving at the quantum speed limit: optimal control of a two-Level system. Phys. Rev. Lett. 111, 260501 (2013)
Hegerfeldt, G.C.: High-speed driving of a two-level system. Phys. Rev. A 90, 032110 (2014)
Avinadav, C., Fischer, R., London, P., Gershoni, D.: Time-optimal universal control of two-level systems under strong driving. Phys. Rev. B 89, 245311 (2014)
Giovanetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)
Deffner, S., Lutz, E.: Generalized clausius inequality for nonequilibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010)
Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)
Liu, C., Xu, Z.Y., Zhu, S.Q.: Quantum-speed-limit time for multiqubit open systems. Phys. Rev. A 91, 022102 (2015)
Wu, S.X., Zhang, Y., Yu, C.S., Song, H.S.: The initial-state dependence of the quantum speed limit. J. Phys. A 48, 045301 (2015)
Bukov, M., Sels, D., Polkovnikov, A.: Geometric speed limit of accessible many-body state preparation. Phys. Rev. X 9, 011034 (2019)
Zhang, Y.J., Han, W., Xia, Y.J., Tian, J.X., Fan, H.: Speedup of quantum evolution of multiqubit entanglement states. Sci. Rep. 6, 27349 (2016)
Hamma, A., Markopoulou, F., Prémont-Schwarz, I., Severini, S.: Lieb–Robinson bounds and the speed of light from topological order. Phys. Rev. Lett. 102, 017204 (2009)
Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Classical-driving-assisted quantum speed-up. Phys. Rev. A 91, 032112 (2015)
Zhang, Y.J., Han, W., Xia, Y.J., Yu, Y.M., Fan, H.: Role of initial system-bath correlation on coherence trapping. Sci. Rep. 5, 13359 (2015)
Cai, X., Zheng, Y.: Quantum dynamical speedup in a nonequilibrium environment. Phys. Rev. A 95, 052104 (2017)
Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)
Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)
Liu, H.B., Yang, W.L., An, J.H., Xu, Z.Y.: Mechanism for quantum speedup in open quantum systems. Phys. Rev. A 93, 020105R (2016)
Zhang, Y.J., Xia, Y.J., Fan, H.: Control of quantum dynamics: non-Markovianity and the speedup of the open system evolution. Europhys. Lett. 116, 30001 (2016)
Xu, K., Zhang, Y.J., Xia, Y.J., Wang, Z.D., Fan, H.: Hierarchical-environment-assisted non-Markovian speedup dynamics control. Phys. Rev. A 98, 022114 (2018)
Xu, K., Han, W., Zhang, Y.J., Xia, Y.J., Fan, H.: Environment-assisted non-Markovian speedup dynamics control. Ann. Phys. (NY) 388, 1 (2018)
Cimmarusti, A.D., Yan, Z., Patterson, B.D., Corcos, L.P., Orozco, L.A., Deffner, S.: Environment-assisted speed-up of the field evolution in cavity quantum electrodynamics. Phys. Rev. Lett. 114, 233602 (2015)
Tang, J.S., Li, C.F., Li, Y.L., Zou, X.B., Guo, G.C., Breuer, H.P., Laine, E.M., Piilo, J.: Measuring non-Markovianity of processes with controllable system-environment interaction. Europhys. Lett. 97, 10002 (2012)
Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Phys. 7, 931 (2011)
Zhang, Y.J., Han, W., Xia, Y.J., Fan, H.: Classical-driving-assisted entanglement dynamics control. Ann. Phys. (NY) 379, 187 (2017)
Cuevas, A., et al.: Quantum communication between remote mechanical resonators. Phys. Rev. A 96, 022322 (2017)
Gatto, D., De Pasquale, A., Giovannetti, V.: Degradation of entanglement in Markovian noise. Phys. Rev. A 99, 032307 (2019)
Rong, X., Geng, J., Shi, F., Liu, Y., Xu, K., Ma, W., Kong, F., Jiang, Z., Wu, Y., Du, J.F.: Experimental fault-tolerant universal quantumgates with solid-state spins under ambientconditions. Nat. Commun. 6, 8748 (2015)
Huang, Y.Y., Wu, Y.K., Wang, F., Hou, P.Y., Wang, W.B., Zhang, W.G., Lian, W.Q., Liu, Y.Q., Wang, H.Y., Zhang, H.Y., He, L., Chang, X.Y., Xu, Y., Duan, L.M.: Experimental realization of robust geometric quantum gates with solid-state spins. Phys. Rev. Lett. 122, 010503 (2019)
Barends, R., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)
Barends, R., et al.: Digitized adiabatic quantum computing with a superconducting circuit. Nature 534, 222 (2016)
Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)
Lindblad, V.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)
Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)
Breuer, H.P., Kappler, B., Petruccione, F.: Stochastic wave-function method for non-Markovian quantum master equations. Phys. Rev. A 59, 1633 (1999)
Li, P.B., Xiang, Z.L., Rabl, P., Nori, F.: Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117, 015502 (2016)
Bureuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)
Leggett, A.J., Chakravarty, S., Dorsey, A., Fisher, M., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)
Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)
Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)
Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)
Acknowledgements
We wish to thank Dr. Kai Xu and Dr. Shao-Xiong Wu for useful discussion. This work is supported by the National Natural Science Foundation of China (11647171, 61675115, 11774406, 11974209), MOST of China (2016YFA0302104, 2016YFA0300600), the Foundation of Chinese Academy of Sciences (XDB01010000, XDB21030300), and Taishan Scholar Project of Shandong Province (China) (tsqn201812059).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Tightness of QSLTs in the amplitude damping channel and the pure dephasing channel: Firstly, we especially point out two notable QSL bounds derived previously. For the nonunitary dynamics between the arbitrary initial state \(\rho _{0}\) to its target state \(\rho _{\tau }\), in [21, 22] the authors choose the Euclidean distance \({\mathbf {D}}(\rho _{0},\rho _{\tau })=\Vert \rho _{\tau }-\rho _{0}\Vert _{hs}\) to acquire a new bound of QSLT
where \(\Vert \cdot \Vert _{hs}=\sqrt{\sum ^{d}_{i=1}\sigma ^{2}_{i}}\) being the Hilbert–Schmidt norm, and \(\sigma _{i}\) being the singular values of \({\dot{\rho }}_{t}\). By considering the relative purity \({\mathbf {f}}(\tau )=\mathbf {tr}[\rho _{\tau }\rho _{0}]/\mathbf {tr}(\rho ^{2}_{0})\) as a distance measure, we also obtain a bound of the QSLT for arbitrary initially mixed state \(\rho _{0}\) to \(\rho _{\tau }\) as follows [16] \(\tau ^{U}_{qsl}=|{\mathbf {f}}(\tau )-1|\mathbf {tr}(\rho ^{2}_{0}){\cdot }\mathbf {Max}[1/\frac{1}{\tau }\int ^{\tau }_{0}\sum ^{d}_{i=1}\sigma _{i}\varrho _{i}\mathrm{d}t,1/\frac{1}{\tau }\int ^{\tau }_{0}\sqrt{\sum ^{d}_{i=1}\sigma ^{2}_{i}}\mathrm{d}t]\), with \(\varrho _{i}\) being the singular values of the initial state \(\rho _{0}\). For a pure initial state \(\rho _{0}=|\phi _{0}\rangle \langle \phi _{0}|\), the singular value \(\varrho _{i}=\delta _{i,1}\), then \(\sum ^{d}_{i=1}\sigma _{i}\varrho _{i}=\sigma _{1}\le \sqrt{\sum ^{d}_{i=1}\sigma ^{2}_{i}}\). The bound \(\tau _{U}\) can be equal to the bound of the QSLT for a pure initial state obtained in [15], as follows:
where the operator norm \(\Vert {\dot{\rho }}_{t}\Vert _{op}=\sigma _{1}\) is the largest singular value of \({\dot{\rho }}_{t}\).
Next, we must ensure the above bounds are fairly compared with each other. It can be clear to find that the dynamics-dependent term that appears in the above bounds is given by \(\Vert {\dot{\rho }}_{t}\Vert _{hs}\) and \(\Vert {\dot{\rho }}_{t}\Vert _{op}\), respectively. In this work, we mainly consider the quantum evolution in the amplitude damping process and the dephasing noise process. In these two noisy channels, \(\Vert {\dot{\rho }}_{t}\Vert _{hs}=\sqrt{2}\Vert {\dot{\rho }}_{t}\Vert _{op}\). This fact allows us to compare the distance term which depend only on the initial and final target states, regardless of the chosen dynamical process. Then, the tighter bound can be clearly acquired.
For the amplitude damping channel, the state of the two-dimension system can evolve to \(\rho _{t}=\frac{1}{2}({\mathbb {I}}+r^{t}_{x}\sigma _{x}+r^{t}_{y}\sigma _{y}+r^{t}_{z}\sigma _{z})\), with \(r^{t}_{x}=r_{x}\sqrt{p_{t}}\), \(r^{t}_{y}=r_{y}\sqrt{p_{t}}\), and \(r^{t}_{z}=(1+r_{z})p_{t}-1\). By considering the pure initial state, that is \(\Vert r\Vert =\sqrt{r^{2}_{x}+r^{2}_{y}+r^{2}_{z}}=1\). Then, the above bounds can be acquired in the following forms, \({\tau ^{M}_{qsl}}/{\tau }={X}/{\int ^{\tau }_{0}\Vert {\dot{\rho }}_{t}\Vert _{hs}\mathrm{d}t}\) and \({\tau ^{D}_{qsl}}/{\tau }={\sqrt{2}Y}/{\int ^{\tau }_{0}\Vert {\dot{\rho }}_{t}\Vert _{hs}\mathrm{d}t}\), where \(X=\sqrt{(1-r^{2}_{z})(\sqrt{p_{\tau }}-1)^{2}+(1+r_{z})^{2}(p_{\tau }-1)^{2}}/\sqrt{2}\), and \(Y=|-r_{z}(1+r_{z})(p_{\tau }-1)+(1-r^{2}_{z})(\sqrt{p_{\tau }}-1)|/2\). By using the inequality relationship \(|A+B|\le \sqrt{A^{2}+B^{2}}\), and \(0{\le }r^{2}_{z}\le 1\), so we can find \(\sqrt{2}Y\le \sqrt{r^{2}_{z}(1+r_{z})^{2}(p_{\tau }-1)^{2}+(1-r^{2}_{z})^{2}(\sqrt{p_{\tau }}-1)^{2}}/\sqrt{2}{\le }X\). It is worth noting that \({\tau ^{M}_{qsl}}\ge {\tau ^{D}_{qsl}}\), and this means the bound derived in [21, 22] is much tighter than the bound in [15] for the evolution from an arbitrary pure state to an evolutional target state. Specially, when the qubit is in the initially excited state, that is, \(r_{z}=1\), the above two bounds \(\tau ^{M}_{qsl}\) and \(\tau ^{D}_{qsl}\) are equal to each other.
When we focus on the pure dephasing channel, the state of the qubit evolves as \(\rho _{t}=\frac{1}{2}({\mathbb {I}}+r^{t}_{x}\sigma _{x}+r^{t}_{y}\sigma _{y}+r^{t}_{z}\sigma _{z})\), with \(r^{t}_{x}=r_{x}q_{t}\), \(r^{t}_{y}=r_{y}q_{t}\), and \(r^{t}_{z}=r_{z}\). According to the specific expressions of \(\tau ^{M}_{qsl}\) and \(\tau ^{D}_{qsl}\), it is easy to verify that \(\tau ^{M}_{qsl}/\tau \equiv 1\), whether the initial state is pure or mixed. That is to say, by considering the dephasing channel, the bound derived in [21, 22] is the attainable tightest. However, by considering \(\tau ^{U}_{qsl}\) for the mixed initial state and \(\tau ^{D}_{qsl}\) for the pure initial state, we can acquire \(\tau ^{U/D}_{qsl}/\tau =\sqrt{r^{2}_{x}+r^{2}_{y}}\le 1\). \(\Vert r\Vert \le 1\) is the length of the GBV \(\mathbf {r}\) for the initial state \(\rho _{0}\). In the case of the pure initial state \(\rho _{0}\), \(\Vert r\Vert =1\) must be satisfied. When \(r_{z}=0\), \(\tau ^{M}_{qsl}/\tau =\tau ^{D}_{qsl}/\tau =1\), while for the mixed initial state, it is clear to find that \(\tau ^{U}_{qsl}\) is always less than the actual evolutional time \(\tau \). So in this case for the nonunitary dephasing channel, \(\tau ^{M}_{qsl}/\tau >\tau ^{U}_{qsl}/\tau \) can be acquired.
According to the comparison of the above bounds in amplitude damping channel and the pure dephasing channel, the bound \(\tau ^{M}_{qsl}\) is not only easier to compute and measure than Deffner’s bound, but also tighter than Deffner’s bound. So in the paper, we mainly use \(\tau ^{M}_{qsl}\) as the proper QSLT to depict the maximal quantum evolution speed of the open system and explore the manipulation of quantum dynamical speedup of an open system.
Rights and permissions
About this article
Cite this article
Zhang, YJ., Lu, X., Lang, HF. et al. Quantum speedup dynamics process without non-Markovianity. Quantum Inf Process 20, 87 (2021). https://doi.org/10.1007/s11128-021-03018-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03018-y