Quantum speedup dynamics process without non-Markovianity | Quantum Information Processing Skip to main content
Log in

Quantum speedup dynamics process without non-Markovianity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Hamiltonian corrections induced by the action of coherent driving forces are often used to fight dissipative and decoherence mechanisms in experiments. For this reason, in the cases of two exactly solvable decoherence models, we propose a scheme for changing the quantum average speed of an open system by controlling an external unitary coherent driving Hamiltonian on the system. For the Markovian dynamics process, with a judicious choice of the coherent driving parameters, the tightness of quantum speed limit of the dynamics process can be weakened. That is to say, we may drive the open system to the quantum speedup evolution. And in the non-Markovian regime, the original quantum speedup dynamics may be brought to the greater degree of speedup by adding the coherent driving. Somewhat contrary to the previous speedup scenarios by the controllable non-Markovianity, the changes in the excited population and coherence caused by the coherent driving are the intrinsic physical reason for quantum speedup in our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 249–254 (1945)

    MathSciNet  MATH  Google Scholar 

  2. Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Nuovo Cimento A 16, 232–240 (1973)

    Article  ADS  Google Scholar 

  3. Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697–1700 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Vaidman, L.: Minimum time for the evolution to an orthogonal quantum state. Am. J. Phys. 60, 182–183 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188–195 (1998)

    Article  Google Scholar 

  6. Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)

    Article  ADS  Google Scholar 

  7. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)

    Article  ADS  Google Scholar 

  8. Jones, P.J., Kok, P.: Geometric derivation of the quantum speed limit. Phys. Rev. A 82, 022107 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. Zwierz, M.: Comment on “Geometric derivation of the quantum speed limit”. Phys. Rev. A 86, 016101 (2012)

    Article  ADS  Google Scholar 

  10. Deffner, S., Lutz, E.: Energy-time uncertainty relation for driven quantum systems. J. Phys. A: Math. Theor. 46, 335302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pfeifer, P.: How fast can a quantum state change with time? Phys. Rev. Lett. 70, 3365 (1993)

    Article  ADS  Google Scholar 

  12. Pfeifer, P., Fröhlich, J.: Generalized time-energy uncertainty relations and bounds on lifetimes of resonances. Rev. Mod. Phys. 67, 759 (1995)

    Article  ADS  Google Scholar 

  13. Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)

    Article  ADS  Google Scholar 

  14. del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)

    Article  Google Scholar 

  15. Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)

    Article  ADS  Google Scholar 

  16. Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 4890 (2014)

    Article  Google Scholar 

  17. Xu, Z.Y., Luo, S., Yang, W.L., Liu, C., Zhu, S.Q.: Quantum speedup in a memory environment. Phys. Rev. A 89, 012307 (2014)

    Article  ADS  Google Scholar 

  18. Deffner, S.: Optimal control of a qubit in an optical cavity. J. Phys. B 47, 145502 (2014)

    Article  ADS  Google Scholar 

  19. Pires, D.P., Cianciaruso, M., Celeri, L.C., Adesso, G., Soares-Pinto, D.O.: Generalized geometric quantum speed limits. Phys. Rev. X 6, 021031 (2016)

    Google Scholar 

  20. Wu, S.X., Yu, C.S.: Quantum speed limit for a mixed initial state. Phys. Rev. A 98, 042132 (2018)

    Article  ADS  Google Scholar 

  21. Campaioli, F., Pollock, F.A., Binder, F.C., Modi, K.: Tightening quantum speed limits for almost all states. Phys. Rev. Lett. 120, 060409 (2018)

    Article  ADS  Google Scholar 

  22. Campaioli, F., Pollock, F.A., Binder, F.C., Modi, K.: Tight, robust, and feasible quantum speed limits for open dynamics. Quantum 3, 168 (2019)

    Article  Google Scholar 

  23. Shanahan, B., Chenu, A., Margolus, N., del Campo, A.: Quantum speed limits across the quantum-to-classical transition. Phys. Rev. Lett. 120, 070401 (2018)

    Article  ADS  Google Scholar 

  24. Okuyama, M., Ohzeki, M.: Quantum speed limit is not quantum. Phys. Rev. Lett. 120, 070402 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  25. Sun, S.N., Zheng, Y.J.: Distinct bound of the quantum speed limit via the gauge invariant distance. Phys. Rev. Lett. 123, 180403 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  27. Bekenstein, J.D.: Energy cost of information transfer. Phys. Rev. Lett. 46, 623–626 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  28. Mukherjee, V., Carlini, A., Mari, A., Caneva, T., Montangero, S., Calarco, T., Fazio, R., Giovannetti, V.: Speeding up and slowing down the relaxation of a qubit by optimal control. Phys. Rev. A 88, 062326 (2013)

    Article  ADS  Google Scholar 

  29. Hegerfeldt, G.C.: Driving at the quantum speed limit: optimal control of a two-Level system. Phys. Rev. Lett. 111, 260501 (2013)

    Article  ADS  Google Scholar 

  30. Hegerfeldt, G.C.: High-speed driving of a two-level system. Phys. Rev. A 90, 032110 (2014)

    Article  ADS  Google Scholar 

  31. Avinadav, C., Fischer, R., London, P., Gershoni, D.: Time-optimal universal control of two-level systems under strong driving. Phys. Rev. B 89, 245311 (2014)

    Article  ADS  Google Scholar 

  32. Giovanetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  33. Deffner, S., Lutz, E.: Generalized clausius inequality for nonequilibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010)

    Article  ADS  Google Scholar 

  34. Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)

    Article  ADS  Google Scholar 

  35. Liu, C., Xu, Z.Y., Zhu, S.Q.: Quantum-speed-limit time for multiqubit open systems. Phys. Rev. A 91, 022102 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  36. Wu, S.X., Zhang, Y., Yu, C.S., Song, H.S.: The initial-state dependence of the quantum speed limit. J. Phys. A 48, 045301 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Bukov, M., Sels, D., Polkovnikov, A.: Geometric speed limit of accessible many-body state preparation. Phys. Rev. X 9, 011034 (2019)

    Google Scholar 

  38. Zhang, Y.J., Han, W., Xia, Y.J., Tian, J.X., Fan, H.: Speedup of quantum evolution of multiqubit entanglement states. Sci. Rep. 6, 27349 (2016)

    Article  ADS  Google Scholar 

  39. Hamma, A., Markopoulou, F., Prémont-Schwarz, I., Severini, S.: Lieb–Robinson bounds and the speed of light from topological order. Phys. Rev. Lett. 102, 017204 (2009)

    Article  ADS  Google Scholar 

  40. Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Classical-driving-assisted quantum speed-up. Phys. Rev. A 91, 032112 (2015)

    Article  ADS  Google Scholar 

  41. Zhang, Y.J., Han, W., Xia, Y.J., Yu, Y.M., Fan, H.: Role of initial system-bath correlation on coherence trapping. Sci. Rep. 5, 13359 (2015)

    Article  ADS  Google Scholar 

  42. Cai, X., Zheng, Y.: Quantum dynamical speedup in a nonequilibrium environment. Phys. Rev. A 95, 052104 (2017)

    Article  ADS  Google Scholar 

  43. Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)

    Article  Google Scholar 

  44. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  45. Liu, H.B., Yang, W.L., An, J.H., Xu, Z.Y.: Mechanism for quantum speedup in open quantum systems. Phys. Rev. A 93, 020105R (2016)

    Article  ADS  Google Scholar 

  46. Zhang, Y.J., Xia, Y.J., Fan, H.: Control of quantum dynamics: non-Markovianity and the speedup of the open system evolution. Europhys. Lett. 116, 30001 (2016)

    Article  ADS  Google Scholar 

  47. Xu, K., Zhang, Y.J., Xia, Y.J., Wang, Z.D., Fan, H.: Hierarchical-environment-assisted non-Markovian speedup dynamics control. Phys. Rev. A 98, 022114 (2018)

    Article  ADS  Google Scholar 

  48. Xu, K., Han, W., Zhang, Y.J., Xia, Y.J., Fan, H.: Environment-assisted non-Markovian speedup dynamics control. Ann. Phys. (NY) 388, 1 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Cimmarusti, A.D., Yan, Z., Patterson, B.D., Corcos, L.P., Orozco, L.A., Deffner, S.: Environment-assisted speed-up of the field evolution in cavity quantum electrodynamics. Phys. Rev. Lett. 114, 233602 (2015)

    Article  ADS  Google Scholar 

  50. Tang, J.S., Li, C.F., Li, Y.L., Zou, X.B., Guo, G.C., Breuer, H.P., Laine, E.M., Piilo, J.: Measuring non-Markovianity of processes with controllable system-environment interaction. Europhys. Lett. 97, 10002 (2012)

    Article  ADS  Google Scholar 

  51. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Phys. 7, 931 (2011)

    Article  ADS  Google Scholar 

  52. Zhang, Y.J., Han, W., Xia, Y.J., Fan, H.: Classical-driving-assisted entanglement dynamics control. Ann. Phys. (NY) 379, 187 (2017)

    Article  MATH  ADS  Google Scholar 

  53. Cuevas, A., et al.: Quantum communication between remote mechanical resonators. Phys. Rev. A 96, 022322 (2017)

    Article  ADS  Google Scholar 

  54. Gatto, D., De Pasquale, A., Giovannetti, V.: Degradation of entanglement in Markovian noise. Phys. Rev. A 99, 032307 (2019)

    Article  ADS  Google Scholar 

  55. Rong, X., Geng, J., Shi, F., Liu, Y., Xu, K., Ma, W., Kong, F., Jiang, Z., Wu, Y., Du, J.F.: Experimental fault-tolerant universal quantumgates with solid-state spins under ambientconditions. Nat. Commun. 6, 8748 (2015)

    Article  ADS  Google Scholar 

  56. Huang, Y.Y., Wu, Y.K., Wang, F., Hou, P.Y., Wang, W.B., Zhang, W.G., Lian, W.Q., Liu, Y.Q., Wang, H.Y., Zhang, H.Y., He, L., Chang, X.Y., Xu, Y., Duan, L.M.: Experimental realization of robust geometric quantum gates with solid-state spins. Phys. Rev. Lett. 122, 010503 (2019)

    Article  ADS  Google Scholar 

  57. Barends, R., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)

    Article  ADS  Google Scholar 

  58. Barends, R., et al.: Digitized adiabatic quantum computing with a superconducting circuit. Nature 534, 222 (2016)

    Article  ADS  Google Scholar 

  59. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. Lindblad, V.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  61. Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)

    Article  ADS  Google Scholar 

  62. Breuer, H.P., Kappler, B., Petruccione, F.: Stochastic wave-function method for non-Markovian quantum master equations. Phys. Rev. A 59, 1633 (1999)

    Article  ADS  Google Scholar 

  63. Li, P.B., Xiang, Z.L., Rabl, P., Nori, F.: Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117, 015502 (2016)

    Article  ADS  Google Scholar 

  64. Bureuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    Google Scholar 

  65. Leggett, A.J., Chakravarty, S., Dorsey, A., Fisher, M., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)

    Article  ADS  Google Scholar 

  66. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  67. Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  68. Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Kai Xu and Dr. Shao-Xiong Wu for useful discussion. This work is supported by the National Natural Science Foundation of China (11647171, 61675115, 11774406, 11974209), MOST of China (2016YFA0302104, 2016YFA0300600), the Foundation of Chinese Academy of Sciences (XDB01010000, XDB21030300), and Taishan Scholar Project of Shandong Province (China) (tsqn201812059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jie Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Tightness of QSLTs in the amplitude damping channel and the pure dephasing channel: Firstly, we especially point out two notable QSL bounds derived previously. For the nonunitary dynamics between the arbitrary initial state \(\rho _{0}\) to its target state \(\rho _{\tau }\), in [21, 22] the authors choose the Euclidean distance \({\mathbf {D}}(\rho _{0},\rho _{\tau })=\Vert \rho _{\tau }-\rho _{0}\Vert _{hs}\) to acquire a new bound of QSLT

$$\begin{aligned} \tau ^{M}_{qsl}=\frac{\Vert \rho _{\tau }-\rho _{0}\Vert _{hs}}{\frac{1}{\tau }\int ^{\tau }_{0}\Vert {\dot{\rho }}_{t}\Vert _{hs}\mathrm{d}t}, \end{aligned}$$
(15)

where \(\Vert \cdot \Vert _{hs}=\sqrt{\sum ^{d}_{i=1}\sigma ^{2}_{i}}\) being the Hilbert–Schmidt norm, and \(\sigma _{i}\) being the singular values of \({\dot{\rho }}_{t}\). By considering the relative purity \({\mathbf {f}}(\tau )=\mathbf {tr}[\rho _{\tau }\rho _{0}]/\mathbf {tr}(\rho ^{2}_{0})\) as a distance measure, we also obtain a bound of the QSLT for arbitrary initially mixed state \(\rho _{0}\) to \(\rho _{\tau }\) as follows [16] \(\tau ^{U}_{qsl}=|{\mathbf {f}}(\tau )-1|\mathbf {tr}(\rho ^{2}_{0}){\cdot }\mathbf {Max}[1/\frac{1}{\tau }\int ^{\tau }_{0}\sum ^{d}_{i=1}\sigma _{i}\varrho _{i}\mathrm{d}t,1/\frac{1}{\tau }\int ^{\tau }_{0}\sqrt{\sum ^{d}_{i=1}\sigma ^{2}_{i}}\mathrm{d}t]\), with \(\varrho _{i}\) being the singular values of the initial state \(\rho _{0}\). For a pure initial state \(\rho _{0}=|\phi _{0}\rangle \langle \phi _{0}|\), the singular value \(\varrho _{i}=\delta _{i,1}\), then \(\sum ^{d}_{i=1}\sigma _{i}\varrho _{i}=\sigma _{1}\le \sqrt{\sum ^{d}_{i=1}\sigma ^{2}_{i}}\). The bound \(\tau _{U}\) can be equal to the bound of the QSLT for a pure initial state obtained in [15], as follows:

$$\begin{aligned} \tau ^{D}_{qsl}=\frac{\sin ^{2}[\arccos (\sqrt{\langle \phi _{0}|\rho _{\tau }|\phi _{0}\rangle })]}{{\frac{1}{\tau }\int ^{\tau }_{0}\Vert {\dot{\rho }}_{t}\Vert _{op}\mathrm{d}t}}, \end{aligned}$$
(16)

where the operator norm \(\Vert {\dot{\rho }}_{t}\Vert _{op}=\sigma _{1}\) is the largest singular value of \({\dot{\rho }}_{t}\).

Next, we must ensure the above bounds are fairly compared with each other. It can be clear to find that the dynamics-dependent term that appears in the above bounds is given by \(\Vert {\dot{\rho }}_{t}\Vert _{hs}\) and \(\Vert {\dot{\rho }}_{t}\Vert _{op}\), respectively. In this work, we mainly consider the quantum evolution in the amplitude damping process and the dephasing noise process. In these two noisy channels, \(\Vert {\dot{\rho }}_{t}\Vert _{hs}=\sqrt{2}\Vert {\dot{\rho }}_{t}\Vert _{op}\). This fact allows us to compare the distance term which depend only on the initial and final target states, regardless of the chosen dynamical process. Then, the tighter bound can be clearly acquired.

For the amplitude damping channel, the state of the two-dimension system can evolve to \(\rho _{t}=\frac{1}{2}({\mathbb {I}}+r^{t}_{x}\sigma _{x}+r^{t}_{y}\sigma _{y}+r^{t}_{z}\sigma _{z})\), with \(r^{t}_{x}=r_{x}\sqrt{p_{t}}\), \(r^{t}_{y}=r_{y}\sqrt{p_{t}}\), and \(r^{t}_{z}=(1+r_{z})p_{t}-1\). By considering the pure initial state, that is \(\Vert r\Vert =\sqrt{r^{2}_{x}+r^{2}_{y}+r^{2}_{z}}=1\). Then, the above bounds can be acquired in the following forms, \({\tau ^{M}_{qsl}}/{\tau }={X}/{\int ^{\tau }_{0}\Vert {\dot{\rho }}_{t}\Vert _{hs}\mathrm{d}t}\) and \({\tau ^{D}_{qsl}}/{\tau }={\sqrt{2}Y}/{\int ^{\tau }_{0}\Vert {\dot{\rho }}_{t}\Vert _{hs}\mathrm{d}t}\), where \(X=\sqrt{(1-r^{2}_{z})(\sqrt{p_{\tau }}-1)^{2}+(1+r_{z})^{2}(p_{\tau }-1)^{2}}/\sqrt{2}\), and \(Y=|-r_{z}(1+r_{z})(p_{\tau }-1)+(1-r^{2}_{z})(\sqrt{p_{\tau }}-1)|/2\). By using the inequality relationship \(|A+B|\le \sqrt{A^{2}+B^{2}}\), and \(0{\le }r^{2}_{z}\le 1\), so we can find \(\sqrt{2}Y\le \sqrt{r^{2}_{z}(1+r_{z})^{2}(p_{\tau }-1)^{2}+(1-r^{2}_{z})^{2}(\sqrt{p_{\tau }}-1)^{2}}/\sqrt{2}{\le }X\). It is worth noting that \({\tau ^{M}_{qsl}}\ge {\tau ^{D}_{qsl}}\), and this means the bound derived in [21, 22] is much tighter than the bound in [15] for the evolution from an arbitrary pure state to an evolutional target state. Specially, when the qubit is in the initially excited state, that is, \(r_{z}=1\), the above two bounds \(\tau ^{M}_{qsl}\) and \(\tau ^{D}_{qsl}\) are equal to each other.

When we focus on the pure dephasing channel, the state of the qubit evolves as \(\rho _{t}=\frac{1}{2}({\mathbb {I}}+r^{t}_{x}\sigma _{x}+r^{t}_{y}\sigma _{y}+r^{t}_{z}\sigma _{z})\), with \(r^{t}_{x}=r_{x}q_{t}\), \(r^{t}_{y}=r_{y}q_{t}\), and \(r^{t}_{z}=r_{z}\). According to the specific expressions of \(\tau ^{M}_{qsl}\) and \(\tau ^{D}_{qsl}\), it is easy to verify that \(\tau ^{M}_{qsl}/\tau \equiv 1\), whether the initial state is pure or mixed. That is to say, by considering the dephasing channel, the bound derived in [21, 22] is the attainable tightest. However, by considering \(\tau ^{U}_{qsl}\) for the mixed initial state and \(\tau ^{D}_{qsl}\) for the pure initial state, we can acquire \(\tau ^{U/D}_{qsl}/\tau =\sqrt{r^{2}_{x}+r^{2}_{y}}\le 1\). \(\Vert r\Vert \le 1\) is the length of the GBV \(\mathbf {r}\) for the initial state \(\rho _{0}\). In the case of the pure initial state \(\rho _{0}\), \(\Vert r\Vert =1\) must be satisfied. When \(r_{z}=0\), \(\tau ^{M}_{qsl}/\tau =\tau ^{D}_{qsl}/\tau =1\), while for the mixed initial state, it is clear to find that \(\tau ^{U}_{qsl}\) is always less than the actual evolutional time \(\tau \). So in this case for the nonunitary dephasing channel, \(\tau ^{M}_{qsl}/\tau >\tau ^{U}_{qsl}/\tau \) can be acquired.

According to the comparison of the above bounds in amplitude damping channel and the pure dephasing channel, the bound \(\tau ^{M}_{qsl}\) is not only easier to compute and measure than Deffner’s bound, but also tighter than Deffner’s bound. So in the paper, we mainly use \(\tau ^{M}_{qsl}\) as the proper QSLT to depict the maximal quantum evolution speed of the open system and explore the manipulation of quantum dynamical speedup of an open system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Lu, X., Lang, HF. et al. Quantum speedup dynamics process without non-Markovianity. Quantum Inf Process 20, 87 (2021). https://doi.org/10.1007/s11128-021-03018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03018-y

Keywords