An improved QKD protocol without public announcement basis using periodically derived basis | Quantum Information Processing Skip to main content
Log in

An improved QKD protocol without public announcement basis using periodically derived basis

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum key distribution (QKD) protocol provides an absolutely secure way to distribute secret keys, where security can be guaranteed by quantum mechanics. To raise the key generation rate of classical BB84 QKD protocol, Hwang et al. (Phys Lett A 244(6):489–494, 1998) proposed a subtle variation (Hwang protocol), in which a pre-shared secret string is used to generate the consistent basis. Although the security of Hwang protocol has been verified in ideal condition, its practicality is still being studied in more depth. In this work, we propose a simple attack strategy to obtain all preparation basis by stealing partial information in each round. To eliminate this security threat, we further propose an improved QKD protocol using the idea of iteratively updating the basis. Furthermore, we apply our improved method to decoy-state QKD protocol and double its key generation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Gottesman, D., Lo, H., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. In: Quantum Information Computation, pp. 136 (2004)

  8. Grasselli, F., Kampermann, H., Bruß, D.: Finite-key effects in multipartite quantum key distribution protocols. New J. Phys. 20(11), 113014 (2018)

    Article  ADS  Google Scholar 

  9. Hamlin, B., Song, F.: Quantum security of hash functions and property-preservation of iterated hashing. Post-quantum cryptography, pp. 329–349. Springer, New York (2019)

    MATH  Google Scholar 

  10. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  11. Hwang, W.Y., Ahn, D.D., Hwang, S.W.: Eavesdropper’s optimal information in variations of Bennett–Brassard 1984 quantum key distribution in the coherent attacks. Phys. Lett. A 279(3–4), 133–138 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hwang, W.Y., Koh, I.G., Han, Y.D.: Quantum cryptography without public announcement of bases. Phys. Lett. A 244(6), 489–494 (1998)

    Article  ADS  Google Scholar 

  13. Hwang, W.Y., Wang, X.B., Matsumoto, K., et al.: Shor-preskill-type security proof for quantum key distribution without public announcement of bases. Phys. Rev. A 67(1), 012302 (2003)

    Article  ADS  Google Scholar 

  14. Ji, S.W., Lee, S.B., Long, G.: Secure quantum key expansion between two parties sharing a key. J. Korean Phys. Soc. 51(4), 1245 (2007)

    Article  ADS  Google Scholar 

  15. Lin, S., Liu, X.F.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack. Int. J. Theor. Phys. 51(8), 2514–2523 (2012)

    Article  MathSciNet  Google Scholar 

  16. Lo, H.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  17. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  18. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  19. Price, A.B., Rarity, J.G., Erven, C.: Quantum key distribution without sifting. arXiv:1707.03331 (2017)

  20. Renner, R., Gisin, N., et al.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  21. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  Google Scholar 

  22. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  23. Trushechkin, A.S., Tregubov, P.A., Kiktenko, E.O., Kurochkin, Y.V., Fedorov, A.K.: Quantum-key-distribution protocol with pseudorandom bases. Phys. Rev. A 97, 012311 (2018)

    Article  ADS  Google Scholar 

  24. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  25. Yang, Y., chen, F., Zhang, X., Yu, J., Zhang, P.: Research on the hash function structures and its application. Wirel. Person. Commun. 94(4), 2969–2985 (2017)

    Article  Google Scholar 

  26. Yang, Yy, Luo, Lz, Yin, Gs: A new secure quantum key expansion scheme. Int. J. Theor. Phys. 52(6), 2008–2016 (2013)

    Article  MathSciNet  Google Scholar 

  27. Yuen, H.P.: Direct use of secret key in quantum cryptography. arXiv:quant-ph/0603264 (2006)

  28. Yuen, H.P.: Key generation: foundations and a new quantum approach. IEEE J. Sel. Top. Quant. Electron. 15(6), 1630–1645 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by Anhui Initiative in Quantum Information Technologies under grant No. AHY150300 and Youth Innovation Promotion Association Chinese Academy of Sciences (CAS) under grant No. 2016394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiping Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Xue, K., Li, Z. et al. An improved QKD protocol without public announcement basis using periodically derived basis. Quantum Inf Process 20, 69 (2021). https://doi.org/10.1007/s11128-021-03000-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03000-8

Keywords

Navigation