Abstract
The quantum key distribution (QKD) protocol provides an absolutely secure way to distribute secret keys, where security can be guaranteed by quantum mechanics. To raise the key generation rate of classical BB84 QKD protocol, Hwang et al. (Phys Lett A 244(6):489–494, 1998) proposed a subtle variation (Hwang protocol), in which a pre-shared secret string is used to generate the consistent basis. Although the security of Hwang protocol has been verified in ideal condition, its practicality is still being studied in more depth. In this work, we propose a simple attack strategy to obtain all preparation basis by stealing partial information in each round. To eliminate this security threat, we further propose an improved QKD protocol using the idea of iteratively updating the basis. Furthermore, we apply our improved method to decoy-state QKD protocol and double its key generation rate.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1, 195–200 (1964)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)
Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)
Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)
Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Gottesman, D., Lo, H., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. In: Quantum Information Computation, pp. 136 (2004)
Grasselli, F., Kampermann, H., Bruß, D.: Finite-key effects in multipartite quantum key distribution protocols. New J. Phys. 20(11), 113014 (2018)
Hamlin, B., Song, F.: Quantum security of hash functions and property-preservation of iterated hashing. Post-quantum cryptography, pp. 329–349. Springer, New York (2019)
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)
Hwang, W.Y., Ahn, D.D., Hwang, S.W.: Eavesdropper’s optimal information in variations of Bennett–Brassard 1984 quantum key distribution in the coherent attacks. Phys. Lett. A 279(3–4), 133–138 (2001)
Hwang, W.Y., Koh, I.G., Han, Y.D.: Quantum cryptography without public announcement of bases. Phys. Lett. A 244(6), 489–494 (1998)
Hwang, W.Y., Wang, X.B., Matsumoto, K., et al.: Shor-preskill-type security proof for quantum key distribution without public announcement of bases. Phys. Rev. A 67(1), 012302 (2003)
Ji, S.W., Lee, S.B., Long, G.: Secure quantum key expansion between two parties sharing a key. J. Korean Phys. Soc. 51(4), 1245 (2007)
Lin, S., Liu, X.F.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack. Int. J. Theor. Phys. 51(8), 2514–2523 (2012)
Lo, H.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Price, A.B., Rarity, J.G., Erven, C.: Quantum key distribution without sifting. arXiv:1707.03331 (2017)
Renner, R., Gisin, N., et al.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)
Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)
Trushechkin, A.S., Tregubov, P.A., Kiktenko, E.O., Kurochkin, Y.V., Fedorov, A.K.: Quantum-key-distribution protocol with pseudorandom bases. Phys. Rev. A 97, 012311 (2018)
Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)
Yang, Y., chen, F., Zhang, X., Yu, J., Zhang, P.: Research on the hash function structures and its application. Wirel. Person. Commun. 94(4), 2969–2985 (2017)
Yang, Yy, Luo, Lz, Yin, Gs: A new secure quantum key expansion scheme. Int. J. Theor. Phys. 52(6), 2008–2016 (2013)
Yuen, H.P.: Direct use of secret key in quantum cryptography. arXiv:quant-ph/0603264 (2006)
Yuen, H.P.: Key generation: foundations and a new quantum approach. IEEE J. Sel. Top. Quant. Electron. 15(6), 1630–1645 (2009)
Acknowledgements
This work is supported in part by Anhui Initiative in Quantum Information Technologies under grant No. AHY150300 and Youth Innovation Promotion Association Chinese Academy of Sciences (CAS) under grant No. 2016394.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jia, Q., Xue, K., Li, Z. et al. An improved QKD protocol without public announcement basis using periodically derived basis. Quantum Inf Process 20, 69 (2021). https://doi.org/10.1007/s11128-021-03000-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03000-8