Abstract
Based on local operations and classical communication, a tripartite quantum operation sharing (QOS) scheme is proposed by utilizing a genuine five-qubit entangled state as quantum channel. The present scheme has such prominent features as the arbitrariness of the concerned operation and the determinacy of sharing successfully as well as the constancy of entanglement resource. Besides, its intrinsic efficiency has come up to 10\(\%\), higher than most previous QOS schemes. More importantly, in terms of complexity, the operations which are necessary to accomplish the present QOS task as a whole are extremely simplistic. In addition, our scheme is feasible with the current experimental techniques.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)
Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282, 4171 (2009)
Tsai, C.W., Yang, C.W.: Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 58, 2244 (2019)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)
Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731 (2014)
He, Y.F., Ma, W.P.: Multiparty quantum secure direct communication immune to collective noise. Quantum Inf. Process. 18, 4 (2019)
An, N.B., Cao, T.B., Nung, V.D.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570 (2011)
Zha, X.W., Song, H.Y.: Two schemes of remote preparation of a four-particle entangled W state via a six-qubit maximally entangled state. Phys. Scr. 84, 015010 (2011)
Wang, Z.Y., Wang, D., Han, L.F.: Optimal remote preparation of a four-qubit entangled cluster-type state via two non-maximally entangled GHZ-type states. Int. J. Theor. Phys. 55, 4371 (2016)
Wei, J.H., et al.: Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states. Quantum Inf. Process. 18, 237 (2019)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)
Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)
Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11, 615 (2012)
Hou, K., Bao, D.Q., Zhu, C.J., Yang, Y.P.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf. Process. 18, 104 (2019)
Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2000)
Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)
Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A 42, 115303 (2009)
Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12, 2405 (2013)
Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)
Zou, X.B., Pahlke, K., Mathis, W.: Teleportation implementation of nondeterministic quantum logic operations by using linear optical elements. Phys. Rev. A 65, 064305 (2002)
Dur, W., Vidal, G., Cirac, J.I.: Optimal conversion of nonlocal unitary operations. Phys. Rev. Lett. 89, 057901 (2002)
Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74, 032317 (2007)
Wang, A.M.: Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger–Horne–Zeilinger states. Phys. Rev. A 75, 062323 (2007)
Zhao, N.B., Wang, A.M.: Hybrid protocol of remote implementations of quantum operations. Phys. Rev. A 76, 062317 (2007)
Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)
Ji, Q.B., Liu, Y.M., Liu, X.S., Yin, X.F., Zhang, Z.J.: Single-Qubit operation sharing with Bell and W product states. Commun. Theor. Phys. 60, 165 (2013)
Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453 (2013)
Ji, Q.B., Liu, Y.M., Xie, C.M., Yin, X.F., Zhang, Z.J.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659 (2014)
Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)
Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)
Duan, Y.J., Zha, X.W.: Remotely sharing a single-qubit operation via a six-qubit entangled state. Int. J. Theor. Phys. 54, 877 (2015)
Peng, J.: Tripartite operation sharing with a six-particle maximally entangled state. Quantum Inf. Process. 14, 4255 (2015)
Peng, J.: Tripartite operation sharing with five-qubit Brown state. Quantum Inf. Process. 15, 2465 (2016)
Xie, C.M., Liu, Y.M., Xing, H., Zhang, Z.J.: Probabilistic three-party sharing of operation on a remote qubit. Entropy 17, 841 (2015)
Xing, H., Liu, D.C., Xing, P.F., Xie, C.M., Liu, X.S., Zhang, Z.J.: Deterministic tripartite sharing of eight restricted sets of single-qubit operations with two Bell states or a GHZ state. Int. J. Quantum Inf. 12, 1450012 (2014)
Zhang, K.J., Zhang, L., Song, T.T., Yang, Y.H.: A potential application in quantum networks–Deterministic quantum operation sharing schemes with Bell states. Sci. China-Phys. Mech. Astron. 59, 660302 (2016)
Xing, H.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553 (2014)
Zhou, S.Q., Bai, M.Q., Zhang, C.Y.: Analysis and construction of four-party deterministic operation sharing with a generalized seven-qubit Brown state. Mod. Phys. Lett. B 31, 1750190 (2017)
Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119 (2005)
Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282, 333 (2009)
Qiu, L.: Quantum information processing through a genuine five-qubit entangled state in cavity QED. Quantum Inf. Process. 9, 643 (2010)
Fang, S.H., Jiang, M.: Bidirectional and asymmetric controlled quantum information transmission via five-qubit Brown State. Int. J. Theor. Phys. 56, 1530 (2017)
Ma, S.Y., Gao, C., Zhang, P., Qu, Z.G.: Deterministic remote preparation via the Brown state. Quantum Inf. Process. 16, 93 (2017)
Gupta, M., Pathak, A., Srikanth, R., Panigrahi, P.K.: Non-destructive orthonormal state discrimination. arXiv:quant-ph/0507096 (2005)
Saha, D., Nandan, S., Panigrahi, P.K.: Local implementations of non-local quantum gates in linear entangled Channel. J. Quantum Inf. Sci. 4, 97 (2014)
Vyas, N., Saha, D., Panigrahi, P.K.: Rooted-tree network for optimal non-local gate implementation. Quantum Inf. Process. 15, 3855 (2016)
Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)
Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)
Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)
Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)
Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)
Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)
Deng, F.G., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)
Zhou, P., Li, X.H., et al.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Chin. Phys. Lett. 22, 1049 (2005)
Li, C.Y., Li, X.H., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)
Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)
Solano, E., Cesar, Cl, de Matos Filho, R.L., Zagury, N.: Reliable teleportation in trapped ions. Eur. Phys. J. D 13, 121 (2001)
Riebe, M., Häffner, H., Roos, C.F., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)
Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)
Peng, Z.H., Zou, J., Liu, X.J.: Scheme for implementing efficient quantum information processing with multiqubit W-class states in cavity QED. J. Phys. B At. Mol. Opt. Phys. 41, 065505 (2008)
Lim, H.T., Kim, Y.S., Ra, Y.S., Bae, J., Kim, Y.H.: Experimental realization of an approximate transpose operation for qutrit systems using a structural physical approximation. Phys. Rev. A 86, 042334 (2012)
Acknowledgements
We are very grateful to the anonymous referee for his/her valuable and helpful suggestions. This work is supported by the National Natural Science Foundation of China (Grant No. 61701002), the school-level key project of West Anhui University (Grant No. KJ103762015B23), and the Key Project of the Domestic Visiting and Studying for Outstanding Youth Cadre Teacher in Colleges and Universities of Anhui Province (Grant No. gxfxZD2016193).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yuan, H., Zhang, Wb. & Yin, Xf. Simplistic quantum operation sharing with a five-qubit genuinely entangled state. Quantum Inf Process 19, 122 (2020). https://doi.org/10.1007/s11128-020-2620-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-2620-z