Topological quantum walks in cavity-based quantum networks | Quantum Information Processing Skip to main content

Advertisement

Log in

Topological quantum walks in cavity-based quantum networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a protocol to implement discrete-time quantum walks and simulate topological insulator phases in cavity-based quantum networks, where a single photon is the quantum walker and multiple cavity input–output processes are employed to realize a polarization-dependent translation operation. Different topological phases can be simulated through tuning the single-photon polarization rotation angles. We show that both the topological boundary states and topological phase transitions can be directly observed via measuring the final photonic density distribution. Moreover, we also demonstrate that these topological signatures are quite robust to practical imperfections. Our work opens a new prospect using cavity-based quantum networks as quantum simulators to study discrete-time quantum walks and mimic condensed matter physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University, Cambridge (1997)

    Google Scholar 

  2. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (2010)

    MATH  Google Scholar 

  3. Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)

    Article  ADS  Google Scholar 

  4. You, J.-Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)

    ADS  Google Scholar 

  5. Xiang, Z.-L., Ashhab, S., You, J.-Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    ADS  Google Scholar 

  6. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.-X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    ADS  Google Scholar 

  8. Duan, L.-M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with “hot” trapped atoms. Phys. Rev. A 67, 032305 (2003)

    ADS  Google Scholar 

  9. Wang, B., Duan, L.-M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75, 050304 (2007)

    ADS  Google Scholar 

  10. Xue, P., Xiao, Y.-F.: Universal quantum computation in decoherence-free subspace with neutral atoms. Phys. Rev. Lett. 97, 140501 (2006)

    ADS  Google Scholar 

  11. Xiao, Y.-F., Lin, X.-M., Gao, J., Yang, Y., Han, Z.-F., Guo, G.-C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)

    ADS  Google Scholar 

  12. Mei, F., Feng, M., Yu, Y.-F., Zhang, Z.-M.: Scalable quantum information processing with atomic ensembles and flying photons. Phys. Rev. A 80, 042319 (2009)

    ADS  Google Scholar 

  13. Mei, F., Yu, Y.-F., Feng, X.-L., Zhang, Z.-M., Oh, C.H.: Quantum entanglement distribution with hybrid parity gate. Phys. Rev. A 82, 052315 (2010)

    ADS  Google Scholar 

  14. Wang, H.-F., Zhu, A.-D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-NOT gate for spin qubits in a quantum-dot-microcavity coupled system. Phys. Rev. A 87, 062337 (2013)

    ADS  Google Scholar 

  15. Wang, H.-F., Zhu, A.-D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489 (2014)

    ADS  Google Scholar 

  16. Li, G., Zhang, P.-F., Zhang, T.-C.: Entanglement of remote material qubits through nonexciting interaction with single photons. Phys. Rev. A 97, 053808 (2018)

    ADS  Google Scholar 

  17. Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature (London) 508, 237–240 (2014)

    ADS  Google Scholar 

  18. Hacker, B., Welte, S., Rempe, G., Ritter, S.: A photon-photon quantum gate based on a single atom in an optical resonator. Nature (London) 536, 193–196 (2016)

    ADS  Google Scholar 

  19. Chang, D.E., Sørensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Google Scholar 

  20. Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342(6164), 1349–1351 (2013)

    ADS  Google Scholar 

  21. Welte, S., Hacker, B., Daiss, S., Ritter, S., Rempe, G.: Cavity carving of atomic Bell states. Phys. Rev. Lett. 118, 210503 (2017)

    ADS  Google Scholar 

  22. Welte, S., Hacker, B., Daiss, S., Ritter, S., Rempe, G.: Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8, 011018 (2018)

    Google Scholar 

  23. Peruzzo, A., Lobino, M., Matthews, J.C.F., Matsuda, N., Politi, A., Poulios, K., Zhou, X.-Q., Lahini, Y., Ismail, N., Worhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., OBrien, J.L.: Quantum walks of correlated photons. Science 329(5998), 1500–1503 (2010)

    ADS  Google Scholar 

  24. Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)

    ADS  Google Scholar 

  25. Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)

    ADS  Google Scholar 

  26. Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Jex, I., Silberhorn, C.: Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011)

    ADS  Google Scholar 

  27. Schreiber, A., Gábris, A., Rohde, P.P., Laiho, K., Stefanak, M., Potoček, V., Hamilton, C., Jex, I., Silberhorn, C.: A 2D quantum walk simulation of two-particle dynamics. Science 336(6077), 55–58 (2012)

    ADS  Google Scholar 

  28. Bian, Z.-H., Li, J., Qin, H., Zhan, X., Zhang, R., Sanders, B.C., Xue, P.: Realization of single-qubit positive-operator-valued measurement via a one-dimensional photonic quantum walk. Phys. Rev. Lett. 114, 203602 (2015)

    ADS  Google Scholar 

  29. Boutari, J., Feizpour, A., Barz, S., Di Franco, C., Kim, M.S., Kolthammer, W.S., Walmsley, I.A.: Large scale quantum walks by means of optical fiber cavities. J. Opt. 18, 094007 (2016)

    ADS  Google Scholar 

  30. Su, Q.-P., Zhang, Y., Yu, L., Zhou, J.-Q., Jin, J.-S., Xu, X.-Q., Xiong, S.-J., Xu, Q.-J., Sun, Z., Chen, K.-F., Nori, F., Yang, C.-P.: Experimental demonstration of quantum walks with initial superposition states. npj Quantum Inf. 5, 40 (2019)

    ADS  Google Scholar 

  31. Preiss, P.M., Ma, R., Tai, M.E., Lukin, A., Rispoli, M., Zupancic, P., Lahini, Y., Ialam, R., Greiner, M.: Strongly correlated quantum walks in optical lattices. Science 347(6227), 1229–1233 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Karski, M., Förster, L., Choi, J.-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009)

    ADS  Google Scholar 

  33. Genske, M., Alt, W., Steffen, A., Werner, A.H., Werner, R.F., Meschede, D., Alberti, A.: Electric quantum walks with individual atoms. Phys. Rev. Lett. 110, 190601 (2013)

    ADS  Google Scholar 

  34. Dadras, S., Gresch, A., Groiseau, C., Wimberger, S., Summy, G.S.: Quantum walk in momentum space with a Bose–Einstein condensate. Phys. Rev. Lett. 121, 070402 (2018)

    ADS  Google Scholar 

  35. Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)

    ADS  Google Scholar 

  36. Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    ADS  Google Scholar 

  37. Yan, Z.-G., Zhang, Y.-R., Gong, M., Yulin, W., Zheng, Y.-R., Li, S.-W., Wang, C., Liang, F.-T., Lin, J., Xu, Y., Guo, C., Sun, L.-H., Peng, C.-Z., Xia, K.-Y., Deng, H., Rong, H., You, J.-Q., Nori, F., Fan, H., Zhu, X.-B., Pan, J.-W.: Strongly correlated quantum walks with a 12-qubit superconducting processor. Science 364(6442), 753–756 (2019)

    ADS  Google Scholar 

  38. Flurin, E., Ramasesh, V.V., Hacohen-Gourgy, S., Martin, L.S., Yao, N.Y., Siddiqi, I.: Observing topological invariants using quantum walks in superconducting circuits. Phys. Rev. X 7, 031023 (2017)

    Google Scholar 

  39. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    ADS  Google Scholar 

  40. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quant. Inf. Proc. 11(5), 1015–1106 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Lovett, N.B., Cooper, S., Everitt, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)

    ADS  MathSciNet  Google Scholar 

  42. Kurzyński, P., Wòjcik, A.: Discrete-time quantum walk approach to state transfer. Phys. Rev. A 83, 062315 (2011)

    ADS  Google Scholar 

  43. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walk. Phys. Rev. A 82, 033429 (2010)

    ADS  Google Scholar 

  44. Kitagawa, T.: Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf. Proc. 11(5), 1107–1148 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Asbóth, J.K.: Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 86, 195414 (2012)

    ADS  Google Scholar 

  46. Asbóth, J.K., Obuse, H.: Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88, 121406 (2013)

    ADS  Google Scholar 

  47. Tarasinski, B., Asbóth, J.K., Dahlhaus, J.P.: Scattering theory of topological phases in discrete-time quantum walks. Phys. Rev. A 89, 042327 (2014)

    ADS  Google Scholar 

  48. Obuse, H., Asbóth, J.K., Nishimura, Y., Kawakami, N.: Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk. Phys. Rev. B 92, 045424 (2015)

    ADS  Google Scholar 

  49. Cedzich, C., Grünbaum, F.A., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A 49, 21LT01 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Ramasesh, V.V., Flurin, E., Rudner, M., Siddiqi, I., Yao, N.Y.: Direct probe of topological invariants using Bloch oscillating quantum walks. Phys. Rev. Lett. 118, 130501 (2017)

    ADS  MathSciNet  Google Scholar 

  51. Kitagawa, T., Broome, M.A., Fedrizzi, A., Rudner, M.S., Berg, E., Kassal, I., Aspuru-Guzik, A., Demler, E., White, A.G.: Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 882 (2012)

    ADS  Google Scholar 

  52. Xiao, L., Zhan, X., Bian, Z.-H., Wang, K.-K., Zhang, X., Wang, X.-P., Li, J., Mochizuki, K., Kim, D., Kawakami, N., Yi, W., Obuse, H., Sanders, B.C., Xue, P.: Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13, 1117–1123 (2017)

    Google Scholar 

  53. Wang, B., Chen, T., Zhang, X.-D.: Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk. Phys. Rev. Lett. 121, 100501 (2018)

    ADS  Google Scholar 

  54. Chen, C., Ding, X., Qin, J., He, Y., Luo, Y.-H., Chen, M.-C., Liu, C., Wang, X.-L., Zhang, W.-J., Li, H., You, L.-X., Wang, Z., Wang, D.-W., Sanders, B.C., Lu, C.-Y., Pan, J.-W.: Observation of topologically protected edge states in a photonic two-dimensional quantum walk. Phys. Rev. Lett. 121, 100502 (2018)

    ADS  Google Scholar 

  55. Zhan, X., Xiao, L., Bian, Z.-H., Wang, K.-K., Qiu, X.-Z., Sanders, B.C., Yi, W., Xue, P.: Detecting topological invariants in nonunitary discrete-time quantum walks. Phys. Rev. Lett. 119, 130501 (2017)

    ADS  MathSciNet  Google Scholar 

  56. Xu, X.-Y., Wang, Q.-Q., Pan, W.-W., Sun, K., Xu, J.-S., Chen, G., Tang, J.-S., Gong, M., Han, Y.-J., Li, C.-F., Guo, G.-C.: Measuring the winding number in a large-scale chiral quantum walk. Phys. Rev. Lett. 120, 260501 (2018)

    ADS  Google Scholar 

  57. Cardano, F., D’Errico, A., Dauphin, A., Maffei, M., Piccirillo, B., Lisio, C.D., Filippis, G.D., Cataudella, V., Santamato, E., Marrucci, L., Lewenstein, M., Massignan, P.: Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516 (2017)

    ADS  Google Scholar 

  58. Cardano, F., Maffei, M., Massa, F., Piccirillo, B., de Lisio, C., De Filippis, G., Cataudella, V., Santamato, E., Marrucci, L.: Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun. 7, 11439 (2016)

    ADS  Google Scholar 

  59. Barkhofen, S., Nitsche, T., Elster, F., Lorz, L., Gábris, A., Jex, I., Silberhorn, C.: Measuring topological invariants in disordered discrete-time quantum walks. Phys. Rev. A 96, 033846 (2017)

    ADS  Google Scholar 

  60. Wang, X.-P., Xiao, L., Qiu, X.-Z., Wang, K.-K., Yi, W., Xue, P.: Detecting topological invariants and revealing topological transitions in discrete-time photonic quantum walks. Phys. Rev. A 98, 013835 (2018)

    ADS  Google Scholar 

  61. Groh, T., Brakhane, S., Alt, W., Meschede, D., Asbóth, J.K., Alberti, A.: Robustness of topologically protected edge states in quantum walk experiments with neutral atoms. Phys. Rev. A 94, 013620 (2016)

    ADS  Google Scholar 

  62. Mugrl, S., Celi, A., Massignan, P., Asbóth, J.K., Lewenstein, M., Lobo, C.: Topological bound states of a quantum walk with cold atoms. Phys. Rev. A 94, 023631 (2016)

    ADS  Google Scholar 

  63. Sajid, M., Asbóth, J.K., Meschede, D., Werner, D., Alberti, A.: Creating anomalous Floquet Chern insulators with magnetic quantum walks. Phys. Rev. B 99, 214303 (2019)

    ADS  Google Scholar 

  64. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    ADS  Google Scholar 

  65. Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Key R&D Program of China (2017YFA0304203); Natural National Science Foundation of China (11604392, 11674200, 11434007); Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (IRT\(\_\)17R70); Fund for Shanxi “1331 Project” Key Subjects Construction; 111 Project (D18001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Mei or Gang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Mei, F., Chen, G. et al. Topological quantum walks in cavity-based quantum networks. Quantum Inf Process 19, 118 (2020). https://doi.org/10.1007/s11128-020-2614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2614-x

Keywords

Navigation