Abstract
Block encryption is a fundamental cryptographic primitive in modern cryptography. However, it is impossible for block encryption to achieve the same security as one-time pad. Quantum mechanics has changed the modern cryptography, and lots of researches have shown that quantum cryptography can outperform the limitation of traditional cryptography. This article proposes a new constructive mode for private quantum encryption, named \(\mathcal {EHE}\), which is a very simple method to construct quantum encryption from classical primitive. Based on \(\mathcal {EHE}\) mode, we construct a quantum block encryption scheme from pseudorandom functions. If the pseudorandom functions are standard secure, our scheme is indistinguishable encryption under chosen plaintext attack. If the pseudorandom functions are permutation on the key space, our scheme can achieve the same security as quantum one-time pad, and the secret key can be securely reused for exponential times if the receiver sends a confirmation after every round of “encryption–decryption.” Thus, our scheme can be viewed as a positive answer to the open problem in quantum cryptography “how to unconditionally reuse or recycle the whole key of private-key quantum encryption.”
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 794–811. Springer, Heidelberg (2012)
Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations. In: Proceedings of Innovations in Computer Science, ICS 2010, pp. 453–469. Tsinghua University Press (2010)
Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS 2002, pp. 449–458. IEEE (2002)
Boykin, P., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 42317 (2003)
Boykin, P.: Information security and quantum mechanics: security of quantum protocols. Dissertation for the Doctoral Degree. University of California, Los Angeles (2002)
Ambainis, A., Mosca, M., Tapp, A., De Wolf, R.: Private quantum channels. In: 41st IEEE FOCS, pp. 547–553 (2000)
Leung, D.: Quantum Vernam cipher. Quantum Inf. Comput. 2(1), 14–34 (2002)
Oppenheim, J., Horodecki, M.: How to reuse a one-time pad and other notes on authentication, encryption, and protection of quantum information. Phys. Rev. A 72, 042309 (2005)
Zhou, N.R., Liu, Y., Zeng, G.H., Xiong, J., Zhu, F.C.: Novel qubit block encryption algorithm with hybrid keys. Physica A 375(2), 693–698 (2006)
Yang, L.: Quantum public-key cryptosystem based on classical NP-complete problem. Manuscript (2003). arXiv: quant-ph/0310076
Yang, L., Liang, M., Li, B., Hu, L., Feng, D.G.: Quantum public-key cryptosystems based on induced trapdoor one-way transformations. Manuscript (2010). arXiv:1012.5249v2
Fujita, H.: Quantum McEliece public-key cryptosystem. Quantum Inf. Comput. 12(3&4), 181–202 (2012)
Yang, L., Liang, M.: Quantum McEliece public-key encryption scheme. Manuscript (2015). arXiv:1501.04895v1
Liang, M., Yang, L.: Public-key encryption and authentication of quantum information. Sci. China-Phys. Mech. Astron. 55, 1618–1629 (2012)
Kawachi, A., Portmann, C.: On the power of quantum encryption keys. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 165–180 (2008)
Nikolopoulos, G.M.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A 77(3), 032348 (2008)
Nikolopoulos, G.M.: Deterministic quantum-public-key encryption: forward search attack and randomization. Phys. Rev. A 79(4), 042327 (2009)
Seyfarth, U., Nikolopoulos, G.M., Alber, G.: Symmetries and security of a quantum-public-key encryption based on single-qubit rotations. Phys. Rev. A 85(2), 022342 (2012)
Alagic, G., Broadbent, A., Fefferman, B., Gagliardoni, T., Schaffner, C., St. Jules, M.: Computational security of quantum encryption. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 47–71 (2016)
Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for authentication of quantum data. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017 Part II. LNCS, vol. 10402, pp. 342-371 (2017)
Portmann, C.: Quantum authentication with key recycling. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017 Part III. LNCS, vol. 10212, pp. 339–368 (2017)
Ambainis, A., Bouda, J., Winter, A.: Nonmalleable encryption of quantum information. J. Math. Phys. 50(4), 042106 (2009)
Alagic, G., Majenz, C.: Quantum non-malleability and authentication. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017 Part II. LNCS, vol. 10402, pp. 310–341 (2017)
Damgard, I., Pedersen, T.B., Salvail, L.: A quantum cipher with near optimal key-recycling. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 494–510. Springer, Heidelberg (2005)
Damgard, I., Brochmann Pedersen, T., Salvail, L.: How to re-use a one-time pad safely and almost optimally even if P=NP. Nat. Comput. 13(4), 469–486 (2014)
Fehr, S., Salvail, L.: Quantum authentication and encryption with key recycling. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017 Part III. LNCS, vol. 10212, pp. 311–338 (2017)
Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. Chapman & Hall, London (2014)
Zhandry, M.: How to construct quantum random functions. In: 53rd IEEE FOCS, pp. 679–687 (2012)
Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. J. Cryptol. 10(3), 151–162 (1997)
Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: Proceedings of the International Symposium on Information Theory and Its Applications (ISITA), pp. 312–316. IEEE Computer Society (2012)
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016)
Xiang, C., Yang, L.: Indistinguishability, semantic security for quantum encryption scheme. Proc. SPIE 8554, 85540G–8 (2012)
Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015 Part II. LNCS, vol. 9216, pp. 609–629. Springer, Heidelberg (2015)
Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)
Gagliardoni, T., Hulsing, A., Schaffner, C.: Semantic security and indistinguishability in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016 Part III. LNCS, vol. 9816, pp. 60–89 (2016)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)
Shannon, C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)
Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 593–609. Springer, Heidelberg (2013)
Acknowledgements
The authors thank the anonymous reviewer for some valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the National Natural Science Foundation of China (Grant No. 61672517), and National Cryptography Development Fund (Grant No. MMJJ20170108).
Rights and permissions
About this article
Cite this article
Liang, M., Yang, L. Block encryption of quantum messages. Quantum Inf Process 19, 111 (2020). https://doi.org/10.1007/s11128-020-2612-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-2612-z