Time optimal control based on classification of quantum gates | Quantum Information Processing Skip to main content
Log in

Time optimal control based on classification of quantum gates

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the minimum time to implement an arbitrary two-qubit gate in two heteronuclear spins systems. We give a systematic characterization of two-qubit gates based on the invariants of local equivalence. The quantum gates are classified into four classes, and for each class the analytical formula of the minimum time to implement the quantum gates is explicitly presented. For given quantum gates, by calculating the corresponding invariants one easily obtains the classes to which the quantum gates belong. In particular, we analyze the effect of global phases on the minimum time to implement the gate. Our results present complete solutions to the optimal time problem in implementing an arbitrary two-qubit gate in two heteronuclear spins systems. Detailed examples are given to typical two-qubit gates with or without global phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Warren, W., Rabitz, H., Dahleb, M.: Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Rabitz, H., d’Vivie-Riedle, R., Motzkus, M., et al.: Whether the future of controlling quantum phenomena? Science 288, 824–828 (2000)

    Article  ADS  Google Scholar 

  3. Daniel, C., Full, J., Gonzàlez, L., et al.: Deciphering the reaction dynamics underlying optimal control laser fields. Science 299, 536–539 (2003)

    Article  ADS  Google Scholar 

  4. Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)

    Article  ADS  Google Scholar 

  5. Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Li, B., Yu, Z.H., Fei, S.M., Li-Jost, X.Q.: Time optimal quantum control of two-qubit systems. Sci. China Phys. Mech. Astron. 56, 2116–2121 (2013)

    Article  ADS  Google Scholar 

  7. Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422 (2013)

    Article  ADS  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Glaser, J., Schulte-Herbrüggen, T., Sieveking, M., et al.: Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy. Science 280, 421–424 (1998)

    Article  ADS  Google Scholar 

  10. Helgason, S.: Differential Geometry. Lie Groups and Symmetric Spaces. Interscience, New York (1978)

    MATH  Google Scholar 

  11. Jing, N.: Unitary and orthogonal equivalence of sets of matrices. Linear. Algebra Appl. 481, 235–242 (2015)

    Article  MathSciNet  Google Scholar 

  12. Silverman, M.: The curious problem of spinor rotation. Eur. J. Phys. 1, 116 (1980)

    Article  Google Scholar 

  13. Aharonov, Y., Susskind, L.: Observability of the sign change of spinors under \(2\pi \) rotations. Phys. Rev. 158, 1237 (1967)

    Article  ADS  Google Scholar 

  14. Du, J., Zhu, J., Shi, M., Peng, X., Suter, D.: Experimental observation of a topological phase in the maximally entangled state of a pair of qubits. Phys. Rev. A 76, 042121 (2007)

    Article  ADS  Google Scholar 

  15. Werner, S.A., Colella, R., Overhauser, A.W., Eagen, C.F.: Observation of the phase shift of a neutron due to precession in a magnetic field. Phys. Rev. Lett. 35, 1053 (1975)

    Article  ADS  Google Scholar 

  16. Rauch, H., Zeilinger, A., Badurek, G., Wilfing, A., Bauspiess, W., Bonse, U.: Verification of coherent spinor rotation of fermions. Phys. Lett. A 54, 425–427 (1975)

    Article  ADS  Google Scholar 

  17. Stoll, E., Vega, J., Vaughan, W.: Explicit demonstration of spinor character for a spin-\(1/2\) nucleus via NMR interferometry. Phys. Rev. A 16, 1521 (1977)

    Article  ADS  Google Scholar 

  18. Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422 (2013)

    Article  ADS  Google Scholar 

  19. Tibbetts, K., Brif, C., Grace, M.D., Donovan, A., Hocker, D., Ho, T., Wu, R., Rabitz, H.: Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A 86, 062309 (2012)

    Article  ADS  Google Scholar 

  20. Schulte-Herbruggen, T., Sporl, A., Khaneja, N., Glaser, S.J.: Optimal control-based efficient synthesis of building blocks of quantum algorithms: a perspective from network complexity towards time complexity. Phys. Rev. A 72, 042331 (2005)

    Article  ADS  Google Scholar 

  21. Shauro, V.P., Zobov, V.E.: Global phase and minimum time of quantum Fourier transform for qudits represented by quadrupole nuclei. Phys. Rev. A 88, 042320 (2013)

    Article  ADS  Google Scholar 

  22. Shauro, V.: Exact solutions for time-optimal control of spin \(I=1\) by NMR. Quantum Inf. Process. 14, 2345–2355 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ji, Y.L., Bian, J., Jiang, M., D’Alessandro, D., Peng, X.H.: Time-optimal control of independent spin-1/2 systems under simultaneous control. Phys. Rev. A 98, 062108 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSF of China under Grant Nos. 11531004, 11675113, 11701320, Shandong provincial NSF of China Grant No. ZR2016AM04, Simons Foundation Grant No. 523868, Beijing Municipal Commission of Education under Grant No. KZ201810028042, and Beijing Natural Science Foundation (Z190005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Zhi Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, BZ., Fei, SM., Jing, N. et al. Time optimal control based on classification of quantum gates. Quantum Inf Process 19, 103 (2020). https://doi.org/10.1007/s11128-020-2602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2602-1

Keywords

Navigation