Abstract
We study the minimum time to implement an arbitrary two-qubit gate in two heteronuclear spins systems. We give a systematic characterization of two-qubit gates based on the invariants of local equivalence. The quantum gates are classified into four classes, and for each class the analytical formula of the minimum time to implement the quantum gates is explicitly presented. For given quantum gates, by calculating the corresponding invariants one easily obtains the classes to which the quantum gates belong. In particular, we analyze the effect of global phases on the minimum time to implement the gate. Our results present complete solutions to the optimal time problem in implementing an arbitrary two-qubit gate in two heteronuclear spins systems. Detailed examples are given to typical two-qubit gates with or without global phases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Warren, W., Rabitz, H., Dahleb, M.: Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993)
Rabitz, H., d’Vivie-Riedle, R., Motzkus, M., et al.: Whether the future of controlling quantum phenomena? Science 288, 824–828 (2000)
Daniel, C., Full, J., Gonzàlez, L., et al.: Deciphering the reaction dynamics underlying optimal control laser fields. Science 299, 536–539 (2003)
Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)
Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)
Li, B., Yu, Z.H., Fei, S.M., Li-Jost, X.Q.: Time optimal quantum control of two-qubit systems. Sci. China Phys. Mech. Astron. 56, 2116–2121 (2013)
Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422 (2013)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Glaser, J., Schulte-Herbrüggen, T., Sieveking, M., et al.: Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy. Science 280, 421–424 (1998)
Helgason, S.: Differential Geometry. Lie Groups and Symmetric Spaces. Interscience, New York (1978)
Jing, N.: Unitary and orthogonal equivalence of sets of matrices. Linear. Algebra Appl. 481, 235–242 (2015)
Silverman, M.: The curious problem of spinor rotation. Eur. J. Phys. 1, 116 (1980)
Aharonov, Y., Susskind, L.: Observability of the sign change of spinors under \(2\pi \) rotations. Phys. Rev. 158, 1237 (1967)
Du, J., Zhu, J., Shi, M., Peng, X., Suter, D.: Experimental observation of a topological phase in the maximally entangled state of a pair of qubits. Phys. Rev. A 76, 042121 (2007)
Werner, S.A., Colella, R., Overhauser, A.W., Eagen, C.F.: Observation of the phase shift of a neutron due to precession in a magnetic field. Phys. Rev. Lett. 35, 1053 (1975)
Rauch, H., Zeilinger, A., Badurek, G., Wilfing, A., Bauspiess, W., Bonse, U.: Verification of coherent spinor rotation of fermions. Phys. Lett. A 54, 425–427 (1975)
Stoll, E., Vega, J., Vaughan, W.: Explicit demonstration of spinor character for a spin-\(1/2\) nucleus via NMR interferometry. Phys. Rev. A 16, 1521 (1977)
Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422 (2013)
Tibbetts, K., Brif, C., Grace, M.D., Donovan, A., Hocker, D., Ho, T., Wu, R., Rabitz, H.: Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A 86, 062309 (2012)
Schulte-Herbruggen, T., Sporl, A., Khaneja, N., Glaser, S.J.: Optimal control-based efficient synthesis of building blocks of quantum algorithms: a perspective from network complexity towards time complexity. Phys. Rev. A 72, 042331 (2005)
Shauro, V.P., Zobov, V.E.: Global phase and minimum time of quantum Fourier transform for qudits represented by quadrupole nuclei. Phys. Rev. A 88, 042320 (2013)
Shauro, V.: Exact solutions for time-optimal control of spin \(I=1\) by NMR. Quantum Inf. Process. 14, 2345–2355 (2015)
Ji, Y.L., Bian, J., Jiang, M., D’Alessandro, D., Peng, X.H.: Time-optimal control of independent spin-1/2 systems under simultaneous control. Phys. Rev. A 98, 062108 (2018)
Acknowledgements
This work is supported by the NSF of China under Grant Nos. 11531004, 11675113, 11701320, Shandong provincial NSF of China Grant No. ZR2016AM04, Simons Foundation Grant No. 523868, Beijing Municipal Commission of Education under Grant No. KZ201810028042, and Beijing Natural Science Foundation (Z190005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sun, BZ., Fei, SM., Jing, N. et al. Time optimal control based on classification of quantum gates. Quantum Inf Process 19, 103 (2020). https://doi.org/10.1007/s11128-020-2602-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-2602-1