Abstract
We study the monogamy and polygamy relations related to quantum correlations for multipartite quantum systems. General monogamy relations are presented for the \(\alpha \)th \((0\le \alpha \le \gamma , \gamma \ge 2)\) power of quantum correlation, and general polygamy relations are given for the \(\beta \)th \((\beta \ge \delta , 0\le \delta \le 1)\) power of quantum correlation. These monogamy and polygamy inequalities are complementary to the existing ones with different parameter regions of \(\alpha \) and \(\beta \). Applying these results to specific quantum correlations, the corresponding new classes of monogamy and polygamy relations are obtained, which include the existing ones as special cases. Detailed examples are given.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of bells inequality violations. Phys. Rev. A 82, 032313 (2010)
Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)
Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf Process 16, 77 (2017)
Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)
Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)
Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)
Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)
Guo, Y.: Any entanglement of assistance is polygamous. Quantum Inf Process 17, 222 (2018)
Jin, Z.X., Fei, S.M.: Tighter monogamy relations of quantum entanglement for multiqubit W-class states. Quantum Inf Process 17, 2 (2018)
Jin, Z.X., Fei, S.M., Li-Jost, X.: Improved monogamy relations with concurrence of assistance and negativity of assistance for multiqubit W-class states. Quantum Inf Process 17, 213 (2018)
Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)
Jin, Z.X., Fei, S.M.: Finer distribution of quantum correlations among multiqubit systems. Quantum Inf Process 18, 21 (2019)
Gour, G., Bandyopadhay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)
Kim, J.S.: Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems. Phys. Rev. A 97, 042332 (2018)
Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)
Kim, J.S., Sanders, B.C.: J. Phys. A: Math. Theor. 44, 295303 (2011)
Kalaga, J.K., Leoński, W.: Quantum steering borders in three-qubit systems. Quantum Inf Process 16, 175 (2017)
Kalaga, J.K., Leoński, W., Szcześniak, R.: Quantum steering and entanglement in three-mode triangle Bose-Hubbard system. Quantum Inf Process 16, 265 (2017)
Olsen, M.K.: Spreading of entanglement and steering along small Bose-Hubbard chains. Phys. Rev. A 92, 033627 (2015)
Deng, X., Xiang, Y., Tian, C., Adesso, G., He, Q.: Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. Phys. Rev. Lett. 118, 230501 (2017)
Kalaga, J.K., Leoński, W.: Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states. Phys. Rev. A 97, 042110 (2018)
Kim, J.S.: Negativity and tight constraints of multiqubit entanglement. Phys. Rev. A 97, 012334 (2018)
Laustsen, T., Verstraete, F., van Enk, S.J.: Local vs joint measurements for the entanglement of assistance. Quantum Inf. Comput. 3, 64 (2003)
Gour, G., Bandyopadhay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)
Zhu, X.N., Fei, S.M.: Monogamy properties of qubit systems. Quantum Inf Process 18, 23 (2019)
Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)
Bai, Y.K., Ye, M.Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)
Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)
Gao, X.H., Fei, S.M.: Estimation of concurrence for multipartite mixed states. Eur. Phys. J. Special Topics 159, 71 (2008)
Groblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)
Kumar, A., Prabhu, R., Sen(De), A., Sen, U.: Effect of a large number of parties on the monogamy of quantum correlations. Phys. Rev. A 91, 012341 (2015)
Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Prabhu, R., Pati, A.K., Sen(De), A., Sen, U.: Conditions for monogamy of quantum correlations: Greenberger-Horne-Zeilinger versus \(W\) states. Phys. Rev. A 85, 040102(R) (2012)
Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)
Salini, K., Prabhu, R., Sen(De), A., Sen, U.: Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous. Ann. Phys 348, 297–305 (2014)
Luo, Y., Tian, T., Shao, L.H., Li, Y.: General monogamy of Tsallis \(q\)-entropy entanglement in multiqubit systems. Phys. Rev. A 93, 062340 (2016)
Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)
Rungta, P., Buz̆ek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)
Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B: Quantum Semiclass Opt. 3, 223 (2001)
Jin, Z.X., Fei, S.M.: Superactivation of monogamy relations for nonadditive quantum correlation measures. Phys. Rev. A 99, 032343 (2019)
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A. 65, 032314 (2002)
Acknowledgements
We thank anonymous reviewers for their suggestions in improving the manuscript. This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grants 11847209; 11675113 and 11635009; the Key Project of Beijing Municipal Commission of Education (Grant No. KZ201810028042); the Beijing Natural Science Foundation (Z190005); the Ministry of Science and Technology of the Peoples’ Republic of China (2015CB856703); the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB23030100 and the China Postdoctoral Science Foundation funded project.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jin, ZX., Fei, SM. & Qiao, CF. Complementary quantum correlations among multipartite systems. Quantum Inf Process 19, 101 (2020). https://doi.org/10.1007/s11128-020-2598-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-2598-6