Abstract
Let R be the polynomial residue ring \({\mathbb {F}}_{q^{2}}+u{\mathbb {F}}_{q^{2}}\) , where \({\mathbb {F}}_{q^2}\) is the finite field with \(q^2\) elements, q is a power of a prime p, and u is an indeterminate with \(u^{2}=0.\) We introduce a Gray map from R to \({\mathbb {F}}_{q^{2}}^{p}\) and study \((1-u)\)-constacyclic codes over R. It is proved that the image of a \((1-u)\)-constacyclic code of length n over R under the Gray map is a distance-invariant linear cyclic code of length pn over \({\mathbb {F}}_{q^{2}}.\) We give some necessary and sufficient conditions for \((1-u)\)-constacyclic codes over R to be Hermitian dual-containing. In particular, a new class of \(2^{m}\)-ary quantum codes is obtained via the Gray map and the Hermitian construction from Hermitian dual-containing \((1-u)\)-constacyclic codes over the ring \({\mathbb {F}}_{2^{2m}}+u{\mathbb {F}}_{2^{2m}}\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over \({\rm GF}(4)\). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60, 2080–2086 (2014)
Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14, 881–889 (2015)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2015)
Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61, 5224–5228 (2015)
Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7, 1277–1283 (2009)
Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \({\mathbb{F}}_{4} + u{\mathbb{F}}_{4}\). Int. J. Quantum Inf. 9, 689–700 (2011)
Guenda, K., Gulliver, T.A.: Quantum codes over rings. Int. J. Quantum Inf. 12, 1450020(1-14) (2014)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F}}_{p} + v{\mathbb{F}}_{p}\). Int. J. Inf. Coding Theory 3, 137–144 (2015)
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F}}_{q}+u{\mathbb{F}}_{q} +v{\mathbb{F}}_{q}+uv{\mathbb{F}}_{q}\). Quantum Inf. Process. 15, 4089–4098 (2016)
Sari, M., Siap, I.: On quantum codes from cyclic codes over a class of nonchain rings. Bull. Korean Math. Soc. 53, 1617–1628 (2016)
Tang, Y., Zhu, S., Kai, X., Ding, J.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. Process. 15, 4489–4500 (2016)
Liu, X., Liu, H.: Quantum codes from linear codes over finite chain rings. Quantum Inf. Process. 16, 240(1-14) (2017)
Ma, F., Gao, J., Fu, F.: Constacyclic codes over the ring \({\mathbb{F}}_{q} + v{\mathbb{F}}_{q} +v^{2}{\mathbb{F}}_{q}\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17, 122(1-19) (2018)
Gao, J., Wang, Y.: \(u-\)Constacyclic codes over the ring \({\mathbb{F}}_{p} + u{\mathbb{F}}_{p} \) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17, 4(1-9) (2018)
Gao, Y., Gao, J., Fu, F.: Quantum codes from cyclic codes over the ring \({\mathbb{F}}_{q} + v_{1}{\mathbb{F}}_{q} +\cdots +v_{r}{\mathbb{F}}_{q}\) Appl. Algebra Eng. Commun. Comput. (2019). https://doi.org/10.1007/s00200-018-0366-y
Bartoli, D., Marcugini, S., Pambianco, F.: New quantum caps in \(PG(4,4)\). J. Comb. Des. 20, 448–466 (2012). see also arXiv:0905.1059v2
Edel’s, Y.: homepage. http://www.mathi.uni-heidelberg.de/~yves
Li, R., Fu, Q., Guo, L., Li, X.: Construction of quantum caps in projective space \(PG(r, 4)\) and quantum codes of distance 4. Quantum Inf. Process. 15, 689–720 (2016)
Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50(8), 1728–1744 (2004)
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This research is supported by the Natural Science Foundation of Anhui Province (No. 1808085MA15), Key University Science Research Project of Anhui Province (No. KJ2018A0497), National Natural Science Foundation of China (Nos. 61772168, 61572168 and 61972126).
Rights and permissions
About this article
Cite this article
Tang, Y., Yao, T., Sun, Z. et al. Nonbinary quantum codes from constacyclic codes over polynomial residue rings. Quantum Inf Process 19, 84 (2020). https://doi.org/10.1007/s11128-020-2584-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-2584-z