Concurrence of two identical atoms in a rectangular waveguide: linear approximation with single excitation | Quantum Information Processing Skip to main content
Log in

Concurrence of two identical atoms in a rectangular waveguide: linear approximation with single excitation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Waveguide electrodynamics has been attracted much attention; however, a waveguide with a cross section has seldom considered. We study two two-level systems (TLSs) interacting with a reservoir of guided modes confined in a rectangular waveguide of a cross section. For the energy separation of the identical TLSs far away from the cutoff frequencies of transverse modes, the delay differential equations are obtained with single-excitation initial in the TLSs. We accurately solved the delay differential equations for the TLSs interacting with either single transverse mode or double transverse modes of the waveguide. The retarded character of multiple reemissions and reabsorptions of photons between the TLSs is revealed, and the effects of the inter-TLS distance on the time evolution of the concurrence of the TLSs is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dodd, P.J., Halliwell, J.J.: Disentanglement and decoherence by open system dynamics. Phys. Rev. A 69, 052105 (2004)

    ADS  MathSciNet  Google Scholar 

  2. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 93, 140404 (2004)

    ADS  Google Scholar 

  3. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    ADS  Google Scholar 

  4. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    ADS  MATH  Google Scholar 

  5. Lehmberg, R.H.: Radiation from an N-atom system. I. General formalism. Phys. Rev. A 2, 883 (1970)

    ADS  Google Scholar 

  6. Feng, X.-P., Ujihara, K.: Quantum theory of spontaneous emission in a one-dimensional optical cavity with two-side output coupling. Phys. Rev. A 41, 2668 (1990)

    ADS  Google Scholar 

  7. Ordonez, G., Kim, S.: Complex collective states in a one-dimensional two-atom system. Phys. Rev. A 70, 032702 (2004)

    ADS  Google Scholar 

  8. Berman, P.R.: Spontaneous emission and scattering in a two-atom system: conservation of probability and energy. Phys. Rev. A 76, 043816 (2007)

    ADS  Google Scholar 

  9. Ficek, Z., Tanaś, R.: textit Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024304 (2006)

    ADS  Google Scholar 

  10. Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)

    ADS  MATH  Google Scholar 

  11. Kielpinski, D., Volin, C., Streed, E.W., Lenzini, F., Lobino, M.: Integrated optics architecture for trapped-ion quantum information processing. Quantum Inf. Process. 15(12), 5315–5338 (2016)

    ADS  Google Scholar 

  12. He, Q.L., Xu, J.B., Yao, D.X.: Mediating and inducing quantum correlation between two separated qubits by one-dimensional plasmonic waveguide. Quantum Inf. Process. 12(9), 3023–3031 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Peng, Z.H., Jia, C.X., Zhang, Y.Q., Zhu, Z.H., Tang, S.Q., Yuan, J.B., Liu, X.J., Kuang, L.M.: Hybrid Toffoli gates with dipole-induced transparency effect in series and parallel cavity-waveguide systems. Quantum Inf. Process. 18(9), 284 (2019)

    ADS  Google Scholar 

  14. Tien, P.K.: Integrated optics and new wave phenomena in optical waveguides. Rev. Mod. Phys. 49, 361 (1977)

    ADS  Google Scholar 

  15. Hammerer, K., Søensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)

    ADS  Google Scholar 

  16. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    ADS  Google Scholar 

  17. Kong, J.A.: Electromagnetic Wave Theory. Wiley, New York (1986)

    Google Scholar 

  18. Shen, J.T., Fan, S.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005)

    ADS  Google Scholar 

  19. Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001 (2005)

    ADS  Google Scholar 

  20. Shen, J.T., Fan, S.: Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007)

    ADS  Google Scholar 

  21. Zhou, L., Gong, Z.R., Liu, Y.-X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    ADS  Google Scholar 

  22. Zhou, L., Yang, L.-P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)

    ADS  Google Scholar 

  23. Lu, J., Zhou, L., Kuang, L.-M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)

    ADS  Google Scholar 

  24. Lu, L., Zhou, L.: T-shaped single-photon router. Opt. Express 23, 22955 (2015)

    ADS  Google Scholar 

  25. Zheng, H.-X., Gauthier, D.J., Baranger, H.U.: Waveguide QED: many-body bound-state effects in coherent and Fock-state scattering from a two-level system. Phys. Rev. A 82, 063816 (2010)

    ADS  Google Scholar 

  26. Zheng, H.-X., Gauthier, D.J., Baranger, H.U.: Cavity-free photon blockade induced by many-body bound states. Phys. Rev. Lett. 107, 223601 (2011)

    ADS  Google Scholar 

  27. Zheng, H.-X., Gauthier, D.J., Baranger, H.U.: Strongly correlated photons generated by coupling a three- or four-level system to a waveguide. Phys. Rev. A 85, 043832 (2012)

    ADS  Google Scholar 

  28. Zheng, H.-X., Gauthier, D.J., Baranger, H.U.: Waveguide-QED-based photonic quantum computation. Phys. Rev. Lett. 111, 090502 (2013)

    ADS  Google Scholar 

  29. Tsoi, T.S., Law, C.K.: Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide. Phys. Rev. A 78, 063832 (2008)

    ADS  Google Scholar 

  30. Shi, T., Sun, C.P.: Lehmann–Symanzik–Zimmermann reduction approach to multiphoton scattering in coupled-resonator arrays. Phys. Rev. B 79, 205111 (2009)

    ADS  Google Scholar 

  31. Shi, T., Fan, S., Sun, C.P.: Two-photon transport in a waveguide coupled to a cavity in a two-level system. Phys. Rev. A 84, 063803 (2011)

    ADS  Google Scholar 

  32. Shi, T., Fan, S.: Two-photon transport through a waveguide coupling to a whispering-gallery resonator containing an atom and photon-blockade effect. Phys. Rev. A 87, 063818 (2013)

    ADS  Google Scholar 

  33. Redchenko, E.S., Yudson, V.I.: Decay of metastable excited states of two qubits in a waveguide. Phys. Rev. A 90, 063829 (2014)

    ADS  Google Scholar 

  34. Ballestero, C.G., Vidal, F.J.G., Moreno, E.: Non-Markovian effects in waveguide-mediated entanglement. New J. Phys. 15, 073015 (2013)

    Google Scholar 

  35. Dai, J., Roulet, A., Le, H.N., Scarani, V.: Rectification of light in the quantum regime. Phys. Rev. A 92, 063848 (2015)

    ADS  Google Scholar 

  36. Huang, J.F., Shi, T., Sun, C.P., Nori, F.: Controlling single-photon transport in waveguides with finite cross section. Phys. Rev. A 88, 013836 (2013)

    ADS  Google Scholar 

  37. Shahmoon, E., Kurizki, G.: Nonradiative interaction and entanglement between distant atoms. Phys. Rev. A 87, 033831 (2013)

    ADS  Google Scholar 

  38. Li, Q., Zhou, L., Sun, C.P.: Waveguide quantum electrodynamics: controllable channel from quantum interference. Phys. Rev. A 89, 063810 (2014)

    ADS  Google Scholar 

  39. Song, H.-X., Sun, X.-Q., Lu, J., Zhou, Lan: Spatial dependent spontaneous emission of an atom in a semi-infinite waveguide of rectangular cross section. Commun. Theor. Phys. 69, 59 (2018)

    ADS  MathSciNet  Google Scholar 

  40. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  41. Milonni, P.W., Knight, P.L.: Retardation in the resonant interaction of two identical atoms. Phys. Rev. A 10, 1096 (1974)

    ADS  Google Scholar 

  42. Milonni, P.W., Knight, P.L.: Retarded interaction of two nonidentical atoms. Phys. Rev. A 11, 1090 (1975)

    ADS  Google Scholar 

  43. Cook, R.J., Milonni, P.W.: Quantum theory of an atom near partially reflecting walls. Phys. Rev. A 35, 5081 (1987)

    ADS  Google Scholar 

  44. Dung, H.T., Ujihara, K.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. A 59, 2524 (1999)

    ADS  Google Scholar 

  45. Dorner, U., Zoller, P.: Laser-driven atoms in half-cavities. Phys. Rev. A 66, 023816 (2002)

    ADS  Google Scholar 

  46. Rist, S., Eschner, J., Hennrich, Markus, Morigi, G.: Photon-mediated interaction between two distant atoms. Phys. Rev. A 78, 013808 (2008)

    ADS  Google Scholar 

  47. Gulfam, Q.-A., Ficek, Z., Evers, J.: Effect of retardation on the dynamics of entanglement between atoms. Phys. Rev. A 86, 022325 (2012)

    ADS  Google Scholar 

  48. Lu, J., Zhou, L., Fu, H.C.: Dark-state mechanism for the long-time transfer of excitations in a donor-acceptor system. Phys. Lett. A 377, 1255 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Guimond, P.-O., Roulet, A., Le, H.N., Scarani, V.: Rabi oscillation in a quantum cavity: Markovian and non-Markovian dynamics. Phys. Rev. A 93, 023808 (2016)

    ADS  Google Scholar 

  50. Wootters, William K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    ADS  MATH  Google Scholar 

  51. Kuhr, S., et al.: Ultrahigh finesse Fabry-Pérot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)

    ADS  Google Scholar 

  52. Raimond, J.M., Brune, M., Haroche, S.: Colloquium: manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Shahmoon, E., Kurizki, G.: Nonradiative interaction and entanglement between distant atoms. Phys. Rev. A 87, 033831 (2013)

    ADS  Google Scholar 

  54. Cook, R.J., Milonni, P.W.: Quantum theory of an atom near partially reflection walls. Phys. Rev. A 35, 5081 (1987)

    ADS  Google Scholar 

  55. Roy, D., Wilson, C.M., Firstenberg, O.: Colloquium: strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys. 89, 021001 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC Grants Nos. 11434011, 11575058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The detailed derivation of Eqs. (8) and (12).

We consider a system of two two-level atoms weakly coupled to a rectangular hollow metallic waveguide made of perfect conductors. Under the dipolar and rotating wave approximation, the total Hamiltonian in the Schrö dinger picture is

$$\begin{aligned} H&=\sum _{l=1}^{2}\hbar \omega _{A}\sigma _{l}^{+}\sigma _{l}^{-}+\sum _{j}\int \mathrm{d}k\hbar \omega _{jk}{\hat{a}}_{jk}^{\dagger }{\hat{a}}_{jk}\nonumber \\&\quad +i\sum _{l=1}^{2}\sum _{j}\int \mathrm{d}k\hbar \frac{g_{j}}{\sqrt{\omega _{jk}}}\left( S_{l}^{-}{\hat{a}}_{jk}^{\dagger }e^{ikz_{l}}- S_{l}^{+}{\hat{a}}_{jk}e^{-ikz_{l}}\right) \end{aligned}$$
(24)

Any state of the two TLSs is linear superposition of the basis of the separable product states \(\left| 1\right\rangle =\left| g_{1}g_{2}\right\rangle , \left| 2\right\rangle =\left| e_{1}g_{2}\right\rangle , \left| 3\right\rangle =\left| g_{1}e_{2}\right\rangle \) and \(\left| 4\right\rangle =\left| e_{1}e_{2}\right\rangle .\) While in a single-excitation subspace, the basis \( \left\{ \left| 20\right\rangle , \left| 30\right\rangle , {\hat{a}} _{jk}^{\dagger }\left| 10\right\rangle \right\} \) is complete to describe the system because the number of quanta is conserved. Here, \(\left| 0\right\rangle \) is the vacuum state of the quantum field. So the wave function of the total system can be written as

$$\begin{aligned} \left| \psi (t)\right\rangle =b_{1}\left| 20\right\rangle +b_{2}\left| 30\right\rangle +\sum _{j}\int \mathrm{d}kb_{jk}{\hat{a}}_{jk}^{\dagger }\left| 10\right\rangle \end{aligned}$$
(25)

\(b_{1}(t), b_{2}(t)\) and \(b_{jk}(t)\) are corresponding amplitude. The wave function of the total system obeys the Schrödinger equation

$$\begin{aligned} i\hbar \frac{\partial \left| \psi (t)\right\rangle }{\partial t} =H\left| \psi (t)\right\rangle \end{aligned}$$
(26)

substituting Eqs. (24) and (25) into Eq. (26), we obtain

$$\begin{aligned}&{\dot{b}}_{1}\left| 20\right\rangle +{\dot{b}}_{2}\left| 30\right\rangle +\sum _{j}\int \mathrm{d}k{\dot{b}}_{jk}{\hat{a}}_{jk}^{\dagger }\left| 10\right\rangle \nonumber \\&\quad =-\frac{i}{\hbar }\left[ \sum _{l=1}^{2}\hbar \omega _{A}\sigma _{l}^{+} \sigma _{l}^{-}+\sum _{j}\int \mathrm{d}k\hbar \omega _{jk}{\hat{a}}_{jk}^{\dagger }{\hat{a}} _{jk}\right. \nonumber \\&\qquad +i\sum _{l=1}^{2}\sum _{j}\int \mathrm{d}k\hbar \frac{g_{j}}{\sqrt{\omega _{jk}}}( S_{l}^{-}{\hat{a}}_{jk}^{\dagger }e^{ikz_{l}} \nonumber \\&\qquad \left. -S_{l}^{+}{\hat{a}} _{jk}e^{-ikz_{l}})\right] \left( b_{1}\left| 20\right\rangle +b_{2}\left| 30\right\rangle +\sum _{j}\int \mathrm{d}kb_{jk}{\hat{a}}_{jk}^{\dagger }\left| 10\right\rangle \right) \nonumber \\&\quad =-i\omega _{A}b_{1}\left| 20\right\rangle -i\omega _{A}b_{2}\left| 30\right\rangle -i\sum _{j}\int \mathrm{d}k\omega _{jk}b_{jk}{\hat{a}} _{jk}^{\dagger }\left| 10\right\rangle \nonumber \\&\qquad +\sum _{j}\int \mathrm{d}k\hbar \frac{g_{j}b_{1}}{\sqrt{\omega _{jk}} }e^{ikz_{1}}{\hat{a}} _{jk}^{\dagger }\left| 10\right\rangle \nonumber \\&\qquad +\sum _{j}\int \mathrm{d}k\hbar \frac{g_{j}b_{2}}{\sqrt{\omega _{jk}}} e^{ikz_{2}}{\hat{a}} _{jk}^{\dagger }\left| 10\right\rangle \nonumber \\&\qquad -\sum _{j}\int \mathrm{d}k\hbar \frac{g_{j}b_{jk}}{ \sqrt{\omega _{jk}}}e^{-ikz_{1}}\left| 20\right\rangle -\sum _{j}\int \mathrm{d}k\hbar \frac{g_{j}b_{jk}}{\sqrt{\omega _{jk}}}e^{-ikz_{2}}\left| 30\right\rangle \nonumber \\&\quad =\left( -i\omega _{A}b_{1}-\sum _{j}\int \mathrm{d}k\hbar \frac{g_{j}b_{jk}}{\sqrt{\omega _{jk} }}e^{-ikz_{1}}\right) \left| 20\right\rangle \nonumber \\&\qquad +\left( -i\omega _{A}b_{2}-\sum _{j}\int \mathrm{d}k\hbar \frac{g_{j}b_{jk}}{\sqrt{\omega _{jk}}} e^{-ikz_{2}}\right) \left| 30\right\rangle \nonumber \\&\qquad +\sum _{j}\int \mathrm{d}k\left( -i\omega _{jk}b_{jk}+\frac{g_{j}b_{1}}{\sqrt{ \omega _{jk}}}e^{ikz_{1}}+\frac{g_{j}b_{2}}{\sqrt{\omega _{jk}}} e^{ikz_{2}}\right) {\hat{a}} _{jk}^{\dagger }\left| 10\right\rangle \end{aligned}$$
(27)

taking the overlap of the both sides of Eq. (27) with \(\left\langle 20\right| , \left\langle 30\right| \) and \(\left\langle 10\right| {\hat{a}} _{jk}\), respectively, gives

$$\begin{aligned} {\dot{b}}_{1}(t)&=-i\omega _{A}b_{1}(t)-\sum _{j}\int \mathrm{d}k\frac{g_{j}b_{jk}(t)}{\sqrt{ \omega _{jk}}}e^{-ikz_{1}} \end{aligned}$$
(28a)
$$\begin{aligned} {\dot{b}}_{2}(t)&=-i\omega _{A}b_{2}(t)-\sum _{j}\int \mathrm{d}k\frac{g_{j}b_{jk}(t)}{\sqrt{ \omega _{jk}}}e^{-ikz_{2}} \end{aligned}$$
(28b)
$$\begin{aligned} {\dot{b}}_{jk}(t)&=-i\omega _{jk}b_{jk}(t)+\frac{g_{j}}{\sqrt{\omega _{jk}}}[ b_{1}(t)e^{ikz_{1}}+b_{2}(t)e^{ikz_{2}}] \end{aligned}$$
(28c)

As the coupling strength is quite weak compared to the atomic frequency \(\omega _{A}\) and field frequencies \(\omega _{jk}\), we introduce three new variables to remove the high-frequency effect,

$$\begin{aligned} b_{1}(t)&=B_{1}(t)e^{-i\omega _{A}t}, \end{aligned}$$
(29a)
$$\begin{aligned} b_{2}(t)&=B_{2}(t)e^{-i\omega _{A}t}, \end{aligned}$$
(29b)
$$\begin{aligned} b_{jk}(t)&=B_{jk}\left( t\right) e^{-i\omega _{jk}t}, \end{aligned}$$
(29c)

using Eqs. (29), (28) become

$$\begin{aligned} {\dot{B}}_{1}(t)&=-\int \mathrm{d}k\frac{g_{j}B_{jk}(t)e^{-i\left( \omega _{jk}-\omega _{A}\right) t}}{\sqrt{\omega _{jk}}}e^{-ikz_{1}} \end{aligned}$$
(30a)
$$\begin{aligned} {\dot{B}}_{2}(t)&=-\int \mathrm{d}k\frac{g_{j}B_{jk}(t)e^{-i\left( \omega _{jk}-\omega _{A}\right) t}}{\sqrt{\omega _{jk}}}e^{-ikz_{2}} \end{aligned}$$
(30b)
$$\begin{aligned} {\dot{B}}_{jk}(t)&=\frac{g_{j}e^{ikz_{1}}}{\sqrt{\omega _{jk}}}[ B_{1}(t)+B_{2}(t)e^{ikz_{0}}]e^{i\left( \omega _{jk}-\omega _{A}\right) t} \end{aligned}$$
(30c)

where \(z_{0}=z_{2}-z_{1}\). Integrating equation of \(B_{jk}(t)\) and inserting it into the equations for \( B_{1}(t)\) and \(B_{2}(t),\) we have

$$\begin{aligned} {\dot{B}}_{1}(t)&=-\sum _{j}\int _{0}^{t}\mathrm{d}\tau \int \mathrm{d}k\frac{ g_{j}^{2}}{\omega _{jk}}[ B_{1}(\tau )+B_{2}(\tau )e^{ikz_{0}}] e^{-i\left( \omega _{jk}-\omega _{A}\right) \left( t-\tau \right) } \end{aligned}$$
(31a)
$$\begin{aligned} {\dot{B}}_{2}(t)&=-\sum _{j}\int _{0}^{t}\mathrm{d}\tau \int \mathrm{d}k\frac{ g_{j}^{2}}{\omega _{jk}}[ B_{1}(\tau )e^{-ikz_{0}}+B_{2}(\tau )] e^{-i\left( \omega _{jk}-\omega _{A}\right) \left( t-\tau \right) } \end{aligned}$$
(31b)

Then, take the linear expansion of dispersion relationship

$$\begin{aligned} \omega _{jk}&=\omega _{A}+v_{j}(k-k_{j0}),k>0 \end{aligned}$$
(32a)
$$\begin{aligned} \omega _{jk}&=\omega _{A}-v_{j}(k+k_{j0}),k<0 \end{aligned}$$
(32b)

into Eq. (31) and we assume the coefficient \(\frac{ g_{j}^{2}}{\omega _{jk}}\) is independent with frequencies, \(\frac{ g_{j}^{2}}{\omega _{jk}}\rightarrow \frac{ g_{j}^{2}}{\omega _{A}}\), which is a variant of Weisskopf–Wigner theory [54], Eq. (31) can be expressed as

$$\begin{aligned} {\dot{B}}_{\mu }(t)&=-\sum _{j}\frac{g_{j}^{2}}{\omega _{A}} \int _{0}^{t}\mathrm{d}\tau \int _{0}^{\infty }\mathrm{d}k[ B_{\mu }(\tau )+B_{\nu }(\tau )e^{i\times \left( -1\right) ^{\nu }kz_{0}}] e^{-iv_{j}(k-k_{j0})\left( t-\tau \right) }\nonumber \\&\quad -\sum _{j}\frac{g_{j}^{2}}{\omega _{A}} \int _{0}^{t}\mathrm{d}\tau \int _{-\infty }^{0}\mathrm{d}k[ B_{\mu }(\tau )+B_{\nu }(\tau )e^{i\times ( -1) ^{\nu }kz_{0}}] e^{iv_{j}(k+k_{j0})( t-\tau ) }\nonumber \\&=-\sum _{j}\frac{g_{j}^{2}}{\omega _{A}} \int _{0}^{t}\mathrm{d}\tau \int _{0}^{\infty }\mathrm{d}k[ B_{\mu }(\tau )+B_{\nu }(\tau )e^{i\times \left( -1\right) ^{\nu }kz_{0}}] e^{-iv_{j}(k-k_{j0})\left( t-\tau \right) }\nonumber \\&\quad -\sum _{j}\frac{g_{j}^{2}}{\omega _{A}} \int _{0}^{t}\mathrm{d}\tau \int _{0 }^{\infty }\mathrm{d}k[ B_{\mu }(\tau )+B_{\nu }(\tau )e^{-i\times ( -1) ^{\nu }kz_{0}}] e^{-iv_{j}(k-k_{j0})( t-\tau ) } \nonumber \\&=-\sum _{j}\gamma _{j}\int _{0}^{t}\mathrm{d}\tau \left[ 2B_{\mu }(\tau )\delta ( t-\tau ) +B_{\nu }(\tau )\delta \left( t-\tau -\frac{\left( -1\right) ^{\nu }z_{0}}{v_{j}}\right) \right. \nonumber \\&\quad \left. +B_{\nu }(\tau )\delta \left( t-\tau +\frac{\left( -1\right) ^{\nu }z_{0}}{v_{j}} \right) \right] e^{iv_{j}k_{j0}( t-\tau ) } \end{aligned}$$
(33)

where \(\mu ,\nu =1,2(\mu \ne \nu )\), \(\gamma _{j}=\frac{\pi g_{j}^{2}}{v_{j}\omega _{A}}\). The integral bound are approximated as \(\int _{ 0}^{+\infty }\mathrm{d}k\simeq \frac{1}{2}\int _{-\infty }^{+\infty }\mathrm{d}k\), since we are only interested in photons with a narrow bandwidth in the vicinity of \(\omega _{A}\) [55]. Then, from Eq. (33) we know that for \(\mu =1,\nu =2\)

$$\begin{aligned} {\dot{B}}_{1}(t)&=-\sum _{j}\gamma _{j}\int _{0}^{t}\mathrm{d}\tau \left[ 2B_{1}(\tau )\delta ( t-\tau )+B_{2}(\tau )\delta \left( t-\tau -\frac{z_{0}}{v_{j}}\right) \right. \nonumber \\&\quad \left. +B_{2}(\tau )\delta \left( t-\tau +\frac{z_{0}}{v_{j}} \right) \right] e^{iv_{j}k_{j0}( t-\tau ) } \nonumber \\&=-\sum _{j}\gamma _{j}\left[ B_{1}( t) + e^{ik_{j0}d}B_{2}\left( t-\frac{d}{ v_{j}}\right) \varTheta \left( t-\frac{d}{v_{j}}\right) \right] \end{aligned}$$
(34)

and for \(\mu =2,\nu =1\)

$$\begin{aligned} {\dot{B}}_{2}(t)&=-\sum _{j}\gamma _{j}\int _{0}^{t}\mathrm{d}\tau \left[ 2B_{2}(\tau )\delta \left( t-\tau \right) +B_{1}(\tau )\delta \left( t-\tau +\frac{z_{0}}{v_{j}}\right) \right. \nonumber \\&\quad \left. +B_{1}(\tau )\delta \left( t-\tau -\frac{z_{0}}{v_{j}} \right) \right] e^{iv_{j}k_{j0}( t-\tau ) } \nonumber \\&=-\sum _{j}\gamma _{j}\left[ B_{2}( t) +e^{ik_{j0}d}B_{1}\left( t-\frac{d}{ v_{j}}\right) \varTheta \left( t-\frac{d}{v_{j}}\right) \right] \end{aligned}$$
(35)

where \(d=|z_{0}|\), \(\varTheta (x)\) is the Heaviside unit step function and the formula \(\int _{0}^{t}f(\tau )\delta (t-\tau )\mathrm{d}\tau =\frac{1}{2}f(t) \) is applied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Lu, G., Lu, J. et al. Concurrence of two identical atoms in a rectangular waveguide: linear approximation with single excitation. Quantum Inf Process 19, 81 (2020). https://doi.org/10.1007/s11128-020-2577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2577-y

Keywords