Abstract
The complexity class \({\textsc {QMA}}\) is the quantum analog of the classical complexity class \({\textsc {NP}}\). The functional analogs of \({\textsc {NP}}\) and \({\textsc {QMA}}\), called functional \({\textsc {NP}}\) (\({\textsc {FNP}}\)) and functional \({\textsc {QMA}}\) (\({\textsc {FQMA}}\)), consist in either outputting a (classical or quantum) witness or outputting NO if there does not exist a witness. The classical complexity class total functional \({\textsc {NP}}\) (\({\textsc {TFNP}}\)) is the subset of \({\textsc {FNP}}\) for which it can be shown that the NO outcome never occurs. \({\textsc {TFNP}}\) includes many natural and important problems. Here we introduce the complexity class total functional \({\textsc {QMA}}\) (\({\textsc {TFQMA}}\)), the quantum analog of \({\textsc {TFNP}}\). We show that \({\textsc {FQMA}}\) and \({\textsc {TFQMA}}\) can be defined in such a way that they do not depend on the values of the completeness and soundness probabilities. We provide examples of problems that lie in \({\textsc {TFQMA}}\), coming from areas such as the complexity of k-local Hamiltonians and public key quantum money. In the context of black-box groups, we note that group non-membership, which was known to belong to \({\textsc {QMA}}\), in fact belongs to \({\textsc {TFQMA}}\). We also provide a simple oracle with respect to which we have a separation between \({\textsc {FBQP}}\) and \({\textsc {TFQMA}}\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aaronson, S.: Quantum copy-protection and quantum money. In: 24th Annual IEEE Conference on Computational Complexity, 2009. CCC’09, pp. 229–242. IEEE (2009)
Aaronson, S.: On perfect completeness for QMA. Quant. Inf. Comput. 9, 81–89 (2009)
Aharonov, D., Ben-Or, M., Brandao, F.G.S.L., Sattath, O.: The pursuit for uniqueness: extending Valiant–Vazirani theorem to the probabilistic and quantum settings. arXiv:0810.4840 (2008)
Aaronson, S., Kuperberg, G.: Quantum versus classical proofs and advice. In: IEEE Conference on Computational Complexity Twenty-Second Annual, 2007. CCC’07, pp. 115–128. IEEE (2007)
Aharonov, D., Eldar, L.: On the complexity of commuting local Hamiltonians, and tight conditions for topological order in such systems. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 334–343. IEEE (2011)
Aharonov, D., Eldar, L.: The commuting local Hamiltonian problem on locally expanding graphs is approximable in NP. Quant. Inf. Process. 14, 83–101 (2015)
Alexander, J.W.: Topological invariants of knots and links. Trans. Am. Math. Soc. 30(2), 275–306 (1928)
Ambainis, A., Kempe, J., Sattath, O.: A quantum Lovász local lemma. J. ACM (JACM) 59, 24 (2012)
Atia, Y., Aharonov, D.: Fast-forwarding of Hamiltonians and exponentially precise measurements. Nat. Commun. 8, 1572 (2017)
Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Proceedings on IEEE FOCS, pp. 229–240 (1984)
Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)
Bookatz, A.D.: QMA-complete problems. Quantum Inf. Comput. 14, 361–383 (2014)
Bravyi, S.: Efficient algorithm for a quantum analogue of 2-SAT. Contemp. Math. 536, 33–48 (2011)
Bravyi, S., Vyalyi, M.: Commutative version of the local Hamiltonian problem and common eigenspace problem. Quantum Inf. Comput. 5(3), 187–215 (2005)
Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)
Cubitt, T.S., Schwarz, M.: A constructive commutative quantum Lovász Local Lemma, and beyond. arXiv: 1112.1413 (2011)
Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player Nash equilibria. J. ACM (JACM) 56(3), 14 (2009)
Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Forum of Mathematics, Sigma, vol. 5. Cambridge University Press (2017)
Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454(1969), 339–354 (1998)
Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)
Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from knots. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 276–289. ACM (2012)
Gilyén, A., Sattath, O.: On preparing ground states of gapped Hamiltonians: an efficient quantum Lovász Local Lemma. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 439–450. IEEE, 2017. arXiv preprint arXiv:1611.08571 (2016)
Goldberg, P.W., Papadimitriou, C.: Towards a unified complexity theory of total functions. J. Comput. Syst. Sci. 94, 167–192 (2018)
Gosset, D., Nagaj, D.: Quantum 3-SAT is QMA \(_1\)-complete. SIAM J. Comput. 45(3), 1080–1128 (2016)
Grover, L.K.: A fast quantum mechanical algorithm for database search? In: Proceedings of 28th Annual ACM Symposium on Theory of Computing, May, pp. 212–219 (1996)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)
He, K., Li, Q., Sun, X., Zhang, J.: Quantum Lovász local lemma: Shearer’s bound is tight. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 461–472 (2019)
Janzing, D., Wocjan, P., Beth, T.: Cooling and low energy state preparation for 3-local Hamiltonians are FQMA-complete. arXiv:quant-ph/0303186 (2003)
Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)
Jordan, C.: Essai sur la géométrie à \(n\) dimensions. Bulletin de la Société mathématique de France 3, 103–174 (1875)
Kempe, J., Regev, O.: 3-Local Hamiltonian is QMA-complete. Quantum Inf. Comput. 3(3), 258–264 (2003)
Kitaev, A.Y.: Quantum measurements and the Abelian stabilizer problem. arXiv preprint, arXiv:quant-ph/9511026 (1995)
Kempe, J., Kitaev, A., Regev, O.: The complexity of the local Hamiltonian problem. SIAM J. Comput. 35(5), 1070–1097 (2006)
Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate Studies in Mathematics, vol. 47. AMS, Providence, RI (2002)
Krentel, M.W.: Structure in locally optimal solutions. In: 30th Annual Symposium on Foundations of Computer Science, 1989, pp. 216–221 (October). IEEE (1989)
Marriott, C., Watrous, J.: Quantum Arthur–Merlin games. Comput. Complex. 14(2), 122152 (2005)
Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and computational complexity. Theor. Comput. Sci. 81, 317–324 (1991)
Moser, R.A.: A constructive proof of the Lovász Local Lemma. In: STOC, pp. 343–350. arXiv:0810.4812 (2009)
Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM 57(2), 11 (2010)
Nagaj, D., Wocjan, P., Zhang, Y.: Fast amplification of QMA. Quantum Inf. Comput. 9(11), 1053–1068 (2009)
Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)
Papadimitriou, C.H., Schaeffer, A.A., Yannakakis, M.: On the complexity of local search. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 438–445. ACM (1990, April)
Regev, O.: Witness-Preserving QMA Amplification, Quantum Computation Lecture Notes, Spring 2006. Tel Aviv University, Tel Aviv-Yafo (2006)
Sattath, O., Arad, I.: A Constructive quantum Lovász Local Lemma for commuting projectors. Quantum Inf. Comput. 15(12), 987–996 (2015)
Sattath, O., Morampudi, S.C., Laumann, C.R., Moessner, R.: When a local Hamiltonian must be frustration-free. Proc. Natl. Acad. Sci. 113(23), 6433–6437 (2016)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994)
Schuch, N.: Complexity of commuting Hamiltonians on a square lattice of qubits. Quantum Inf. Comput. 11, 901 (2011)
Schwarz, M., Cubitt, T.S., Verstraete, F.: An information-theoretic proof of the constructive commutative quantum Lovász Local Lemma. arXiv:1311.6474 (2013)
Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004)
Watrous, J.: Succinct quantum proofs for properties of finite groups. In: Proceedings on 41st Annual Symposium on Foundations of Computer Science, 2000, pp. 537–546. IEEE (2000)
Acknowledgements
We thank András Gilyén, Han-Hsuan Lin, Frank Verstraete and Ronald de Wolf for useful discussions. Our research was partially funded by the Singapore Ministry of Education and the National Research Foundation under Grant R-710-000-012-135 and by the QuantERA ERA-NET Cofund project QuantAlgo. S.M. thanks the Center for Quantum Technologies, Singapore, where part of this work was carried out.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Massar, S., Santha, M. Total functions in QMA. Quantum Inf Process 20, 35 (2021). https://doi.org/10.1007/s11128-020-02959-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02959-0