Construction of new quantum codes via Hermitian dual-containing matrix-product codes | Quantum Information Processing Skip to main content
Log in

Construction of new quantum codes via Hermitian dual-containing matrix-product codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In 2001, Blackmore and Norton introduced an important tool called matrix-product codes, which turn out to be very useful to construct new quantum codes of large lengths. To obtain new and good quantum codes, we first give a general approach to construct matrix-product codes being Hermitian dual-containing and then provide the constructions of such codes in the case \(s{\mid }(q^{2}-1)\), where s is the number of the constituent codes in a matrix-product code. For \(s{\mid } (q+1)\), we construct such codes with lengths more flexible than the known ones in the literature. For \(s{\mid } (q^{2}-1)\) and \(s{\not \mid } (q+1)\), such codes are constructed in an unusual manner; some of the constituent codes therein are not required to be Hermitian dual-containing. Accordingly, by Hermitian construction, we present two procedures for acquiring quantum codes. Finally, we list some good quantum codes, many of which improve those available in the literature or add new parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blackmore, T., Norton, G.H.: Matrix-product codes over \({\mathbb{F}}_{q}\). Appl. Algebra Eng. Commun. Comput. 12, 477–500 (2001)

    MATH  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Cao, Y., Cao, Y., Fu, F.: Matrix-product structure of constacyclic codes over finite chain rings \({\mathbb{F}}_{p^m}[u]/\langle u^e\rangle \). Appl. Algebra Eng. Commun. Comput. 29(6), 455–478 (2018)

    MATH  Google Scholar 

  6. Chen, B., Lin, L., Liu, H.: Matrix product codes with Rosenbloom–Tsfasman metric. Acta Math. Sci. 33(3), 687–700 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delsarte, P., Goethals, J.M., MacWilliams, F.J.: On generalized Reed–Muller codes and their relatives. Inf. Control 16(5), 403–442 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edel, Y.: Some good quantum twisted codes. http://www.mathi.uniheidelberg.de/ yves/Matritzen/QTBCH/QTBCHIndex.html

  9. Fan, Y., Ling, S., Liu, H.: Homogeneous weights of matrix product codes over finite principal ideal rings. Finite Fields Appl. 29, 247–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, Y., Ling, S., Liu, H.: Matrix product codes over finite commutative Frobenius rings. Des. Codes Cryptogr. 71(2), 201–227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, K., Ling, S., Xing, C.: Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 52(3), 986–991 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fitzgerald, J., Lax, R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13(2), 147–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galindo, C., Hernando, F., Ruano, D.: New quantum codes from evaluation and matrix-product codes. Finite Fields Appl. 36, 98–120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geil, O., Høholdt, T.: On hyperbolic code. In: Proceedings of AAECC-14, Lecture Notes in Computer Science, vol. 2227. Springer, Berlin, pp. 159–171 (2001)

  15. Geil, O., Özbudak, F.: On affine variety codes from the Klein quartic. Cryptogr. Commun. 11(2), 237–257 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 55–64 (2004)

    Article  MATH  Google Scholar 

  17. Hernando, F., Lally, K., Ruano, D.: Construction and decoding of matrix-product codes from nested codes. Appl. Algebra Eng. Commun. Comput. 20(5–6), 497–507 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hernando, F., Ruano, D.: Decoding of matrix-product codes. J. Algebra Appl. 12(4), 1250185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jitman, S., Mankean, T.: Matrix-product constructions for Hermitian self-orthogonal codes. arXiv: 1710.04999

  21. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kasami, T., Lin, S., Peterson, W.W.: New generalizations of the Reed–Muller codes—part I: primitive codes. IEEE Trans. Inf. Theory 14(2), 189–199 (1968)

    Article  MATH  Google Scholar 

  23. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. La Guardia, G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331 (2009)

    Article  ADS  Google Scholar 

  25. La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60(3), 1528–1535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, R., Wang, J., Liu, Y., Guo, G.: New quantum constacyclic codes. Quantum Inf. Process. 60(5), 1–23 (2019)

    MathSciNet  Google Scholar 

  27. Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quant. Inf. Comput. 13(1–2), 21–35 (2013)

    MathSciNet  Google Scholar 

  28. Liu, H., Pan, X.: Galois hulls of linear codes over finite fields. Des. Codes Cryptogr. 88(2), 241–255 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, X., Dinh, H.Q., Liu, H., Yu, L.: On new quantum codes from matrix product codes. Cryptogr. Commun. 10, 579–589 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, X., Yu, L., Liu, H.: New quantum codes from Hermitian dual-containing codes. Int. J. Quantum Inf. 17(1), 1–11 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saints, K., Heegard, C.: On hyperbolic cascaded Reed-Solomon codes. In: Proceedings of AAECC-10, Lecture Notes in Computer Science, vol. 673. Springer, Berlin, pp. 291–303 (1993)

  32. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  33. Sobhani, R.: Matrix-product structure of repeated-root cyclic codes over finite fields. Finite Fields Appl. 39, 216–232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2577 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. van Asch, B.: Matrix-product codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 19, 39–49 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, T., Ge, G.: Quantum codes from generalized Reed–Solomon codes and matrix-product codes. arXiv:1508.00978v1

  37. Zhang, T., Ge, G.: Quantum codes derived from certain classes of polynomials. IEEE Trans. Inf. Theory 62(11), 6638–6643 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, S., Sun, Z., Li, P.: A class of negacyclic BCH codes and its application to quantum codes. Des. Codes Cryptogr. 86, 2139–2165 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratefulness to the anonymous referees for their valuable comments and suggestions which have highly improved the quality of this manuscript. This work was supported by National Natural Science Foundation of China under Grant No. 11271217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlian Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project supported by the National Natural Science Foundation of China (Grant No. 11271217).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Cui, J. Construction of new quantum codes via Hermitian dual-containing matrix-product codes. Quantum Inf Process 19, 427 (2020). https://doi.org/10.1007/s11128-020-02921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02921-0

Keywords

Navigation