Abstract
In 2001, Blackmore and Norton introduced an important tool called matrix-product codes, which turn out to be very useful to construct new quantum codes of large lengths. To obtain new and good quantum codes, we first give a general approach to construct matrix-product codes being Hermitian dual-containing and then provide the constructions of such codes in the case \(s{\mid }(q^{2}-1)\), where s is the number of the constituent codes in a matrix-product code. For \(s{\mid } (q+1)\), we construct such codes with lengths more flexible than the known ones in the literature. For \(s{\mid } (q^{2}-1)\) and \(s{\not \mid } (q+1)\), such codes are constructed in an unusual manner; some of the constituent codes therein are not required to be Hermitian dual-containing. Accordingly, by Hermitian construction, we present two procedures for acquiring quantum codes. Finally, we list some good quantum codes, many of which improve those available in the literature or add new parameters.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)
Blackmore, T., Norton, G.H.: Matrix-product codes over \({\mathbb{F}}_{q}\). Appl. Algebra Eng. Commun. Comput. 12, 477–500 (2001)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Cao, Y., Cao, Y., Fu, F.: Matrix-product structure of constacyclic codes over finite chain rings \({\mathbb{F}}_{p^m}[u]/\langle u^e\rangle \). Appl. Algebra Eng. Commun. Comput. 29(6), 455–478 (2018)
Chen, B., Lin, L., Liu, H.: Matrix product codes with Rosenbloom–Tsfasman metric. Acta Math. Sci. 33(3), 687–700 (2013)
Delsarte, P., Goethals, J.M., MacWilliams, F.J.: On generalized Reed–Muller codes and their relatives. Inf. Control 16(5), 403–442 (1970)
Edel, Y.: Some good quantum twisted codes. http://www.mathi.uniheidelberg.de/ yves/Matritzen/QTBCH/QTBCHIndex.html
Fan, Y., Ling, S., Liu, H.: Homogeneous weights of matrix product codes over finite principal ideal rings. Finite Fields Appl. 29, 247–267 (2014)
Fan, Y., Ling, S., Liu, H.: Matrix product codes over finite commutative Frobenius rings. Des. Codes Cryptogr. 71(2), 201–227 (2014)
Feng, K., Ling, S., Xing, C.: Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 52(3), 986–991 (2006)
Fitzgerald, J., Lax, R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13(2), 147–158 (1998)
Galindo, C., Hernando, F., Ruano, D.: New quantum codes from evaluation and matrix-product codes. Finite Fields Appl. 36, 98–120 (2015)
Geil, O., Høholdt, T.: On hyperbolic code. In: Proceedings of AAECC-14, Lecture Notes in Computer Science, vol. 2227. Springer, Berlin, pp. 159–171 (2001)
Geil, O., Özbudak, F.: On affine variety codes from the Klein quartic. Cryptogr. Commun. 11(2), 237–257 (2019)
Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 55–64 (2004)
Hernando, F., Lally, K., Ruano, D.: Construction and decoding of matrix-product codes from nested codes. Appl. Algebra Eng. Commun. Comput. 20(5–6), 497–507 (2009)
Hernando, F., Ruano, D.: Decoding of matrix-product codes. J. Algebra Appl. 12(4), 1250185 (2013)
Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)
Jitman, S., Mankean, T.: Matrix-product constructions for Hermitian self-orthogonal codes. arXiv: 1710.04999
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Kasami, T., Lin, S., Peterson, W.W.: New generalizations of the Reed–Muller codes—part I: primitive codes. IEEE Trans. Inf. Theory 14(2), 189–199 (1968)
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)
La Guardia, G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331 (2009)
La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60(3), 1528–1535 (2014)
Li, R., Wang, J., Liu, Y., Guo, G.: New quantum constacyclic codes. Quantum Inf. Process. 60(5), 1–23 (2019)
Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quant. Inf. Comput. 13(1–2), 21–35 (2013)
Liu, H., Pan, X.: Galois hulls of linear codes over finite fields. Des. Codes Cryptogr. 88(2), 241–255 (2020)
Liu, X., Dinh, H.Q., Liu, H., Yu, L.: On new quantum codes from matrix product codes. Cryptogr. Commun. 10, 579–589 (2018)
Liu, X., Yu, L., Liu, H.: New quantum codes from Hermitian dual-containing codes. Int. J. Quantum Inf. 17(1), 1–11 (2019)
Saints, K., Heegard, C.: On hyperbolic cascaded Reed-Solomon codes. In: Proceedings of AAECC-10, Lecture Notes in Computer Science, vol. 673. Springer, Berlin, pp. 291–303 (1993)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)
Sobhani, R.: Matrix-product structure of repeated-root cyclic codes over finite fields. Finite Fields Appl. 39, 216–232 (2016)
Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2577 (1996)
van Asch, B.: Matrix-product codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 19, 39–49 (2008)
Zhang, T., Ge, G.: Quantum codes from generalized Reed–Solomon codes and matrix-product codes. arXiv:1508.00978v1
Zhang, T., Ge, G.: Quantum codes derived from certain classes of polynomials. IEEE Trans. Inf. Theory 62(11), 6638–6643 (2016)
Zhu, S., Sun, Z., Li, P.: A class of negacyclic BCH codes and its application to quantum codes. Des. Codes Cryptogr. 86, 2139–2165 (2018)
Acknowledgements
The authors would like to express their sincere gratefulness to the anonymous referees for their valuable comments and suggestions which have highly improved the quality of this manuscript. This work was supported by National Natural Science Foundation of China under Grant No. 11271217.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Project supported by the National Natural Science Foundation of China (Grant No. 11271217).
Rights and permissions
About this article
Cite this article
Cao, M., Cui, J. Construction of new quantum codes via Hermitian dual-containing matrix-product codes. Quantum Inf Process 19, 427 (2020). https://doi.org/10.1007/s11128-020-02921-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02921-0