Abstract
We provide several bounds on the maximum size of MU k-Schmidt bases in \(\mathbb {C}^{d}\otimes \mathbb {C}^{d'}\). We first give some upper bounds on the maximum size of MU k-Schmidt bases in \(\mathbb {C}^{d}\otimes \mathbb {C}^{d'}\) by conversation law. Then we construct two maximally entangled mutually unbiased (MU) bases in the space \(\mathbb {C}^{2}\otimes \mathbb {C}^{3}\), which is the first example of maximally entangled MU bases in \(\mathbb {C}^d\otimes \mathbb {C}^{d'}\) when \(d\not \mid d'\). By applying a general recursive construction to this example, we are able to obtain two maximally entangled MU bases in \(\mathbb {C}^{d}\otimes \mathbb {C}^{d'}\) for infinitely many \(d,d'\) such that d is not a divisor of \(d'\). We also give some applications of the two maximally entangled MU bases in \(\mathbb {C}^{2}\otimes \mathbb {C}^{3}\). Further, we present an efficient method of constructing MU k-Schmidt bases. It solves an open problem proposed in [Y. F. Han et al., Quantum Inf. Process. 17, 58 (2018)]. Our work improves all previous results on maximally entangled MU bases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Schwinger, J.: Unitary operator bases. Proceedings of the national academy of sciences of the United States Of America 46(4), 570 (1960)
Bennett, C.H., Brassard, G.: In: Proceedings of the Ieee International Conference on Computers, Systems and Signal Processing (1984)
Acin, A., Jané, E., Vidal, G.: Optimal estimation of quantum dynamics. Physical Review A 64(5), 050302 (2001)
Chiribella, G., D’Ariano, G., Perinotti, P., Sacchi, M.: Efficient use of quantum resources for the transmission of a reference frame. Physical review letters 93(18), 180503 (2004)
Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Physical review letters 94(14), 140501 (2005)
Chiribella, G., D’Ariano, G.M., Perinotti, P.: Optimal cloning of unitary transformation. Physical review letters 101(18), 180504 (2008)
Scott, A.J.: Optimizing quantum process tomography with unitary \(2\)-designs. Journal of Physics A: Mathematical and Theoretical 41(5), 055308 (2008)
Shaari, J.S., Nasir, R.N., Mancini, S.: Mutually unbiased unitary bases. Physical Review A 94(5), 052328 (2016)
Tao, Y.-H., Nan, H., Zhang, J., Fei, S.-M.: Mutually unbiased maximally entangled bases in \(\mathbb{C}^{d}\otimes \mathbb{C}^{kd}\). Quantum Information Processing 14(6), 2291–2300 (2015)
Xu, D.: Construction of mutually unbiased maximally entangled bases through permutations of hadamard matrices. Quantum Information Processing 16, 1–11 (2017)
Liu, J., Yang, M., Feng, K.: Mutually unbiased maximally entangled bases in \(\mathbb{C}^{d}\otimes \mathbb{C}^{d}\). Quantum Information Processing 16(6), 159 (2017)
Xu, D.: Trace-2 excluded subsets of special linear groups over finite fields and mutually unbiased maximally entangled bases. Quantum Information Processing 18(7), 213 (2019)
Guo, Y., Du, S., Li, X., Wu, S.: Entangled bases with fixed schmidt number. Journal of Physics A: Mathematical and Theoretical 48(24), 245301 (2015)
Li, M.-S., Wang, Y.-L.: Construction of special entangled basis based on generalized weighing matrices. Journal of Physics A: Mathematical and Theoretical 52(37), 375303 (2019)
Han, Y.-F., Zhang, G.-J., Yong, X.-L., Xu, L.-S., Tao, Y.-H.: Mutually unbiased special entangled bases with schmidt number \(2\) in \(\mathbb{C}^{3}\otimes \mathbb{C}^{4k}\). Quantum Information Processing 17(3), 58 (2018)
Zhang, J., Tao, Y.-H., Nan, H., Fei, S.-M.: Construction of mutually unbiased bases in \(\mathbb{C}^{d}\otimes \mathbb{C}^{2^ld^{\prime }}\). Quantum Information Processing 14(7), 2635–2644 (2015)
Cheng, X., Shang, Y.: New bounds of mutually unbiased maximally entangled bases in \(\mathbb{C}^{d}\otimes \mathbb{C}^{kd}\). Quantum Information & Computation 18(13–14), 1152–1164 (2018)
Shi, F., Zhang, X., Guo, Y.: Constructions of unextendible entangled bases. Quantum Information Processing 18(10), 324 (2019)
Klappenecker, A., Rötteler, M.: Constructions of mutually unbiased bases. In: International Conference on Finite Fields and Applications. Springer, Berlin (2003), pp. 137–144
Wocjan, P., Beth, T.: New construction of mutually unbiased bases in square dimensions,” arXiv preprint arXiv:quant-ph/0407081, (2004)
Wieśniak, M., Paterek, T., Zeilinger, A.: Entanglement in mutually unbiased bases. New Journal of Physics 13(5), 053047 (2011)
Weiner, Mihály, : A gap for the maximum number of mutually unbiased bases. Proc. Am. Math. Soc. 141(6), 1963–1969 (2013)
Boykin, P.O., Sitharam, M., Tiep, P.H., Wocjan, P.: Mutually unbiased bases and orthogonal decompositions of lie algebras,” arXiv preprint arXiv:quant-ph/0506089 (2005)
Brierley, S., Weigert, S.: Maximal sets of mutually unbiased quantum states in dimension 6. Phys. Rev. A 78, 042312 (Oct 2008)
Brierley, S., Weigert, S.: Constructing mutually unbiased bases in dimension six. Phys. Rev. A 79, 052316 (May 2009)
Jaming, P., Matolcsi, M., Móra, P., Szöllösi, F., Weiner, M.: A generalized pauli problem and an infinite family of mub-triplets in dimension 6. Journal of Physics A: Mathematical and Theoretical 42(24), 245305 (2009)
Brierley, S.: Mutually Unbiased Bases in Low Dimensions, ser. Ph.D thesis, University of York, Department of Mathematics (2009)
Brierley, S., Weigert, S.: Mutually Unbiased Bases and Semi-definite Programming. Journal of Physics: Conference Series 254, 012008 (Jun. 2010)
Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. International journal of quantum information 8(04), 535–640 (2010)
McNulty, D., Weigert, S.: On the impossibility to extend triples of mutually unbiased product bases in dimension six. International Journal of Quantum Information 10(05), 1250056 (2012)
McNulty, D., Weigert, S.: All mutually unbiased product bases in dimension 6. Journal of Physics A: Mathematical and Theoretical 45(13), 135307 (2012)
Raynal, P., Lü, X., Englert, B.-G.: Mutually unbiased bases in six dimensions: The four most distant bases. Phys. Rev. A 83, 062303 (Jun 2011)
Szöllösi, F.: Complex hadamard matrices of order 6: a four-parameter family. Journal of the London Mathematical Society 85(3), 616–632 (2012)
Goyeneche, D.: Mutually unbiased triplets from non-affine families of complex hadamard matrices in dimension 6. Journal of Physics A: Mathematical and Theoretical 46(10), 105301 (2013)
McNulty, D., Weigert, S.: The limited role of mutually unbiased product bases in dimension 6. Journal of Physics A: Mathematical and Theoretical 45(10), 102001 (2012)
Maxwell, A.S., Brierley, S.: On properties of Karlsson Hadamards and sets of mutually unbiased bases in dimension six. Linear Algebra and its Applications 466, 296–306 (2015)
McNulty, D., Pammer, B., Weigert, S.: Mutually unbiased product bases for multiple qudits. J. Math. Phys. 57(3), 032202 (2016)
Chen, L., Yu, L.: Product states and schmidt rank of mutually unbiased bases in dimension six. Journal of Physics A: Mathematical and Theoretical 50(47), 475304 (2017)
Chen, L., Yu, L.: Mutually unbiased bases in dimension six containing a product-vector basis. Quantum Information Processing 17(8), 198 (2018)
Liang, M., Hu, M., Chen, L., Chen, X.: The \(h_2\)-reducible matrix in four six-dimensional mutually unbiased bases. Quantum Information Processing 18(11), 352 (2019)
Xu, D.: Construction of mutually unbiaesd maximally entangled bases in \({\mathbb{C}}^{2^s}\otimes {\mathbb{C}}^{2^s}\) by using Galois rings. Quantum Inf. Process. 19(6), 175 (2020)
Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Annals of Physics 191(2), 363–381 (1989)
Acknowledgements
We appreciate the anonymous referee’s suggestion that points out an early version of Theorem 4. FS and XZ were supported by NSFC under Grant No. 11771419, the Fundamental Research Funds for the Central Universities, and Anhui Initiative in Quantum Information Technologies under Grant No. AHY150200. LC and YS were supported by the NNSF of China (Grant No. 11871089), and the Fundamental Research Funds for the Central Universities (Grant No. ZG216S2005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A:The proof of Lemma 10
Proof
We write U and V in the matrix form as follows:
and
Let
where \(|x_j\rangle \)’s are vectors in \(\mathbb {C}^6\), and \(|x_j\rangle \ne |v_1\rangle ~\forall j\). Suppose U and X are two MUBs which can be extended to four MUBs in \(\mathbb {C}^6\). If \(|x_1\rangle =|v_2\rangle \), then we define
One can verify \(PUQ=U\), and thus PUQ and PX are two MUBs which can be extended to four MUBs in \(\mathbb {C}^6\). Since \(P|x_1\rangle =P|v_2\rangle =|v_1\rangle \), we have a contradiction with the hypothesis that X cannot have \(|v_1\rangle \). So we have shown that \(|x_1\rangle \) cannot be \(|v_2\rangle \). Then up to a column permutation of X, we have \(|x_j\rangle \ne |v_2\rangle ~\forall j\). Using the same idea, it suffices to exclude two cases, namely \(|x_1\rangle =|v_3\rangle \) and \(|x_1\rangle =|v_5\rangle \), in order to prove that X cannot have any column vector of V. If \(|x_1\rangle =|v_3\rangle \), then we define
A straightforward computing yields that \(PUQ=U\), and \((-i)P|v_3\rangle =|v_1\rangle \). So PUQ and \((-i)PX\) are two MUBs that can be extended to four MUBs in \(\mathbb {C}^6\). Since \((-i)P|x_1\rangle =(-i)P|v_3\rangle =|v_1\rangle \), we have a contradiction with the hypothesis that X cannot have \(|v_1\rangle \). Hence we exclude \(|x_1\rangle =|v_3\rangle \). If \(|x_1\rangle =|v_5\rangle \) we may choose
A straightforward computing yields that \(PUQ=U\), and \(P|v_5\rangle =|v_1\rangle \). Similarly we can exclude \(|x_1\rangle =|v_5\rangle \). Therefore, X cannot have any column vector of V. This completes the proof. \(\square \)
Appendix B:\(M_3(6,6)\ge 3\)
The following three maximally entangled MU bases in \(\mathbb {C}^{3}\otimes \mathbb {C}^{3}\) are constructed from [8].
For three MUBs in \(\mathbb {C}^{2}\), we choose
Then \(\{\mathcal {S}_{1}\otimes \mathcal {T}_{1}, \mathcal {S}_{2}\otimes \mathcal {T}_{2},\mathcal {S}_{3}\otimes \mathcal {T}_{3}\}\) is a set of three maximally entangled MU bases in \(\mathbb {C}^{3}\otimes \mathbb {C}^{6}\) by Eq. (23), and \(\{\mathcal {T}_{1}^{\mathrm {T}}\otimes \mathcal {S}_{1}\otimes \mathcal {T}_{1}, \mathcal {T}_{2}^{\mathrm {T}}\otimes \mathcal {S}_{2}\otimes \mathcal {T}_{2},\mathcal {T}_{3}^{\mathrm {T}}\otimes \mathcal {S}_{3}\otimes \mathcal {T}_{3}\}\) is a set of three MU 3-Schmidt bases in \(\mathbb {C}^{6}\otimes \mathbb {C}^{6}\) by Eq. (24).
Rights and permissions
About this article
Cite this article
Shi, F., Shen, Y., Chen, L. et al. Bounds on the number of mutually unbiased entangled bases. Quantum Inf Process 19, 383 (2020). https://doi.org/10.1007/s11128-020-02890-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02890-4