Continuous-variable measurement-device-independent quantum key distribution via quantum catalysis | Quantum Information Processing Skip to main content

Advertisement

Log in

Continuous-variable measurement-device-independent quantum key distribution via quantum catalysis

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) is a promising candidate for the immunity to side-channel attacks, but unfortunately seems to face the limitation of transmission distance in contrast to discrete-variable (DV) counterpart. In this paper, we suggest a method of improving the performance of CV-MDI-QKD involving the achievable secret key rate and transmission distance by using zero-photon catalysis (ZPC), which is indeed a noiseless attenuation process. The numerical simulation results show that the transmission distance of ZPC-based CV-MDI-QKD under the extreme asymmetric case is better than that of the original protocol. Attractively, in contrast to the previous single-photon subtraction (SPS)-based CV-MDI-QKD, the proposed scheme enables a higher secret key rate and a longer transmission distance. In particular, the ZPC-based CV-MDI-QKD can tolerate more imperfections of detectors than both the original protocol and the SPS-based CV-MDI-QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    ADS  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    ADS  MATH  Google Scholar 

  3. Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    ADS  Google Scholar 

  4. Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Zhang, Y.C., Li, Z.Y., Chen, Z.Y., Weedbrook, C., Zhao, Y.J., Wang, X.Y., Huang, Y.D., Xu, C.C., Zhang, X.X., Wang, Z.Y., Li, M., Zhang, X.Y., Zheng, Z.Y., Chu, B.J., Gao, X.Y., Meng, N., Cai, W.W., Wang, Z., Wang, G., Yu, S., Guo, H.: Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 4, 035006 (2019)

    ADS  Google Scholar 

  6. Zhang, Y.C., Chen, Z.Y., Pirandola, S., Wang, X.Y., Zhou, C., Chu, B.J., Zhao, Y.J., Xu, B.J., Yu, S., Guo, H.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125, 010502 (2020)

    ADS  Google Scholar 

  7. Zhang, G., Haw, J.Y., Cai, H., Xu, F., Assad, S.M., Fitzsimons, J.F., Zhou, X., Zhang, Y., Yu, S., Wu, J., Ser, W., Kwek, L.C., Liu, A.Q.: An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics 13, 839–842 (2019)

    ADS  Google Scholar 

  8. Pirandola, S. Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J., Razavi, M., Shaari, J.S., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography (2019). arXiv:1906.01645 [quant-ph]

  9. Filip, R.: Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 77(2), 022310 (2008)

    ADS  Google Scholar 

  10. Gessner, M., Pezze, L., Smerzi, A.: Efficient entanglement criteria for discrete, continuous, and hybrid variables. Phys. Rev. A 94(2), 020101(R) (2016)

    ADS  Google Scholar 

  11. Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200501 (2008)

    ADS  Google Scholar 

  12. Ralph, T.C.: Security of continuous-variable quantum cryptography. Phys. Rev. A 62(6), 062306 (2000)

    ADS  Google Scholar 

  13. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    ADS  Google Scholar 

  14. Lodewyck, J., Bloch, M., Garcia-Patron, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangie, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)

    ADS  Google Scholar 

  15. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93(17), 170504 (2004)

    ADS  Google Scholar 

  16. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013)

    ADS  Google Scholar 

  17. Grosshans, F.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94(2), 020504 (2005)

    ADS  Google Scholar 

  18. Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)

    ADS  Google Scholar 

  19. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023 (2008)

    ADS  Google Scholar 

  20. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88(2), 022339 (2013)

    ADS  Google Scholar 

  21. Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A 87(6), 062329 (2013)

    ADS  Google Scholar 

  22. Qin, H., Kumar, R., Alleaume, R.: Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution. Phys. Rev. A 94(1), 012325 (2016)

    ADS  Google Scholar 

  23. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

    ADS  Google Scholar 

  24. Marshall, K., Weedbrook, C.: Device-independent quantum cryptography for continuous variables. Phys. Rev. A 90(4), 042311 (2014)

    ADS  Google Scholar 

  25. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9, 397 (2015)

    ADS  Google Scholar 

  26. Zhang, X.Y., Zhang, Y.C., Zhao, Y.J., Wang, X.Y., Yu, S., Guo, H.: Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 96(4), 042334 (2017)

    ADS  Google Scholar 

  27. Li, Z.Y., Zhang, Y.C., Xu, F.H., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052301 (2014)

    ADS  Google Scholar 

  28. Ma, X.C., Sun, S.H., Jiang, M.S., Gui, M., Liang, L.M.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(4), 042335 (2014)

    ADS  Google Scholar 

  29. Kumar, C., Singh, J., Bose, S., Arvind: Coherence assisted non-Gaussian measurement device independent quantum key distribution. Phys. Rev. A 100(5), 052329 (2019)

    ADS  Google Scholar 

  30. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)

    ADS  Google Scholar 

  31. Chen, Z.Y., Zhang, Y.C., Wang, G., Li, Z.Y., Guo, H.: Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks. Phys. Rev. A 98(1), 012314 (2018)

    ADS  Google Scholar 

  32. Zhang, Y.C., Li, Z.Y., Yu, S., Gu, W.Y., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)

    ADS  Google Scholar 

  33. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  34. Xu, F., Qi, B., Liao, Z., Lo, H.K.: Long distance measurement-device-independent quantum key distribution with entangled photon sources. Appl. Phys. Lett. 103(6), 061101 (2013)

    ADS  Google Scholar 

  35. Ma, H.X., Huang, P., Bai, D.Y., Wang, T., Wang, S.Y., Bao, W.S., Zeng, G.H.: Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation. Phys. Rev. A 99(2), 022322 (2019)

    ADS  Google Scholar 

  36. Ye, W., Guo, Y., Xia, Y., Zhong, H., Zhang, H., Ding, J.Z., Hu, L.Y.: Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Phys. Sin. 69, 060301 (2020)

    Google Scholar 

  37. Wang, P., Wang, X.Y., Li, Y.M.: Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers. Phys. Rev. A 99(4), 042309 (2019)

    ADS  Google Scholar 

  38. Zhao, Y.J., Zhang, Y.C., Xu, B.J., Yu, S., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction. Phys. Rev. A 97(4), 042328 (2018)

    ADS  Google Scholar 

  39. Ma, H.X., Huang, P., Bai, D.Y., Wang, S.Y., Bao, W.S., Zeng, G.H.: Continuous-variable measurement-device-independent quantum key distribution with photon subtraction. Phys. Rev. A 97(4), 042329 (2018)

    ADS  Google Scholar 

  40. Hu, L.Y., Al-amri, M., Liao, Z.Y., Zubairy, M.S.: Entanglement improvement via a quantum scissor in a realistic environment. Phys. Rev. A 100, 052322 (2019)

    ADS  Google Scholar 

  41. Bartley, T.J., Crowley, P.J.D., Datta, A., Nunn, J., Zhang, L., Walmsley, I.: Strategies for enhancing quantum entanglement by local photon subtraction. Phys. Rev. A 87(2), 022313 (2013)

    ADS  Google Scholar 

  42. Wu, J.N., Liu, S.Y., Hu, L.Y., Huang, J.H., Duan, Z.L., Ji, Y.H.: Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition. J. Opt. Soc. Am. B 32(11), 2299 (2015)

    ADS  Google Scholar 

  43. Li, Z.Y., Zhang, Y.C., Wang, X.Y., Xu, B.J., Peng, X., Guo, H.: Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution. Phys. Rev. A 93(1), 012310 (2016)

    ADS  Google Scholar 

  44. Lvovsky, A.I., Mlynek, J.: Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. Phys. Rev. Lett. 88(25), 250401 (2002)

    ADS  Google Scholar 

  45. Guo, Y., Ye, W., Zhong, H., Liao, Q.: Continuous-variable quantum key distribution with non-Gaussian quantum catalysis. Phys. Rev. A 99(3), 032327 (2019)

    ADS  Google Scholar 

  46. Ye, W., Zhong, H., Liao, Q., Huang, D., Hu, L.Y., Guo, Y.: Improvement of self-referenced continuous-variable quantum key distribution with quantum photon catalysis. Opt. Express 27(12), 17186–17198 (2019)

    ADS  Google Scholar 

  47. Zhang, S.L., Zhang, X.D.: Photon catalysis acting as noiseless linear amplification and its application in coherence enhancement. Phys. Rev. A 97(4), 043830 (2018)

    ADS  MathSciNet  Google Scholar 

  48. Hu, L.Y., Wu, J.N., Liao, Z.Y., Zubairy, M.S.: Multiphoton catalysis with coherent state input: nonclassicality and decoherence. J. Phys. B At. Mol. Phys. 49(17), 175504 (2016)

    ADS  Google Scholar 

  49. Hu, L., Liao, Z., Zubairy, M.S.: Continuous-variable entanglement via multiphoton catalysis. Phys. Rev. A 95(1), 012310 (2017)

    ADS  Google Scholar 

  50. Zhou, W.D., Ye, W., Liu, C.J., Hu, L.Y., Liu, S.Q.: Entanglement improvement of entangled coherent state via multiphoton catalysis. Laser Phys. Lett. 15(6), 065203 (2018)

    ADS  Google Scholar 

  51. Pirandola, S.: Entanglement reactivation in separable environments. New J. Phys. 15(11), 113046 (2013)

    ADS  Google Scholar 

  52. Navascues, M., Grosshans, F., Acin, A.: Optimality of gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97(19), 190502 (2006)

    ADS  Google Scholar 

  53. Garcia-Patron, R., Cerf, N.J.: Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)

    ADS  Google Scholar 

  54. Wolf, M.M., Giedke, G., Cirac, J.I.: Extremality of Gaussian quantum states. Phys. Rev. Lett. 96(8), 080502 (2006)

    ADS  MathSciNet  Google Scholar 

  55. Fiurasek, J., Cerf, N.J.: Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution. Phys. Rev. A 86(6), 060302(R) (2012)

    ADS  Google Scholar 

  56. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)

    ADS  Google Scholar 

  57. Ren, S., Kumar, R., Wonfor, A., Tang, X., Penty, R., White, I.: Reference pulse attack on continuous variable quantum key distribution with local local oscillator under trusted phase noise. J. Opt. Soc. Am. B 36(3), B7–B15 (2019)

    Google Scholar 

  58. Zhang, H., Fang, J., He, G.Q.: Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 86(2), 022338 (2012)

    ADS  Google Scholar 

  59. Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 4, 726–730 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572529, 61821407, 11664017, 11964013), the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province, and the Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No. CX20190126) and the Postgraduate Independent Exploration and Innovation Project of Central South University (Grant No. 2019zzts070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The secret key rate of the SPS-based CV-MDI-QKD under one-mode collective Gaussian attacks

Appendix A: The secret key rate of the SPS-based CV-MDI-QKD under one-mode collective Gaussian attacks

To make a comparison of the proposed ZPC-based CV-MDI-QKD scheme, here we present the SPS-based CV-MDI-QKD protocol, as shown in Fig. 10, where Alice and Bob respectively generates a two-mode squeezed vacuum state, \(\mathrm{EPR}_{1}\) and \(\mathrm{EPR}_{2}\), with the same variance \(V_{A}=V_{B}\). Then, one half of \(\mathrm{EPR}_{1}\) is kept by Alice to perform the heterodyne detection, the other half of \(\mathrm{EPR}_{1}\) after the SPS operation is sent to Charlie through an insecure quantum channel with a length \(L_{AC}\). Independently, one half of \(\mathrm{EPR}_{2}\) is retained by Bob to perform the heterodyne detection, the other half of \(\mathrm{EPR}_{2}\) is directly sent to Charlie through the quantum channel with a length \(L_{BC}\). For the sake of discussions, we assume that both channels are same as the cases of our proposed scheme, and Eve implements one-mode collective Gaussian attacks on the quantum channels. In addition, it should be noted that, different from the ZPC operation, the SPS is a common non-Gaussian operation, which leads to make it impossible for directly using typical Gaussian methods to derive the secret key rate. Fortunately, according to the Gaussian optimality theorem [48,49,50], the lower bound of asymptotic secret key rate \(K_{\mathrm{asy}}\) of reverse reconciliation under one-mode collective attack is

$$\begin{aligned} K_{\mathrm{asy}}=P_{1}\left\{ \beta \widetilde{I}\left( A{:}B\right) -\widetilde{ \chi }\left( B{:}E\right) \right\} , \end{aligned}$$
(13)

where \(P_{1}\) represents the success probability of implementing the SPS, \( \beta ,\widetilde{I}\left( A{:}B\right) \) and \(\widetilde{\chi }\left( B {:}E\right) \) are the same definitions as Eq. (8).

Fig. 10
figure 10

(Color online) Schematic diagram of the CV-MDI-QKD protocol using the SPS operation (purple box). a EB scheme of the SPS-based CV-MDI-QKD. b Equivalent one-way protocol of the EB scheme of the SPS-based CV-MDI-QKD under the assumption that Eve is aware of Charlie, and Bob’s EPR\(_{2}\) state and displacement except for heterodyne detection. EPR\(_{1}\) and EPR\(_{2}\): Alice’s and Bob’s two-mode squeezed state, respectively. Het: heterodyne detection. Hom: homodyne detection. \(\left\{ X_{A},P_{A}\right\} \) and \( \left\{ X_{B},P_{B}\right\} \): Alice’s and Bob’s measurement results of heterodyne detection, respectively. \(X_{C_{1}},P_{C_{2}}\): measurement results of homodyne detection of measuring the X and P quadrature, respectively. PNRD: photon number resolving detector; \(\left| 1\right\rangle \left\langle 1\right| \): single-photon Fock state; \(T_{A}( \varepsilon _{A})\), \(T_{B}\left( \varepsilon _{B}\right) \): channel parameters for Alice-Charlie and Bob-Charlie. \(T_{c}( \varepsilon _{\mathrm{th}})\): equivalent channel transmittance (excess noise). \(D\left( \beta \right) \): displacement operation of Bob

In order to obtain the exact form of Eq. (13), we first make a review about the SPS operation (purple box) shown in Fig. 10, which can be viewed as an equivalent operator

$$\begin{aligned} \varTheta&=_{C}\left\langle 1\right| B\left( T\right) \left| 0\right\rangle _{C} \nonumber \\&=\frac{1-T}{T}a_{2}\exp \left[ a_{2}^{\dagger }a_{2}\ln \sqrt{T}\right] . \end{aligned}$$
(14)

Thus, the state \(\left| \varPsi \right\rangle _{A_{1}\widetilde{A}_{2}}\) after operating single-photon subtraction is expressed as

$$\begin{aligned} \left| \varPsi \right\rangle _{A_{1}\widetilde{A}_{2}}&=\frac{1}{\sqrt{ P_{1}}}\varTheta \left| \mathrm{EPR}_{1}\right\rangle _{A_{1}A_{2}} \nonumber \\&=\frac{W_{1}W_{2}}{\sqrt{P_{1}}}\exp \left[ W_{2}a_{1}^{\dagger }a_{2}^{\dagger }\right] a^{\dagger }\left| 00\right\rangle _{A_{1} \widetilde{A}_{2}}, \end{aligned}$$
(15)

with

$$\begin{aligned} W_{1}&=\sqrt{\frac{\left( 1-\lambda ^{2}\right) \left( 1-T\right) }{T}}, \nonumber \\ W_{2}&=\lambda \sqrt{T}, \end{aligned}$$
(16)

and

$$\begin{aligned} P_{1}=\frac{W_{1}^{2}W_{2}^{2}}{1-2W_{2}^{2}+W_{2}^{4}}. \end{aligned}$$
(17)

According to the equivalent one-way protocol, after the state \(\left| \varPsi \right\rangle _{A_{1}\widetilde{A}_{2}}\) passing through the quantum channel characterized by the transmission efficiency \(T_{c}\) and excess noise \(\varepsilon _{\mathrm{th}}\), the covariance matrix \(\varGamma _{A\widetilde{B} _{1}}\) can be given by

$$\begin{aligned} \varGamma _{A\widetilde{B}_{1}}= & {} \left( \begin{array}{cc} aII &{} c\widetilde{Z}\sigma _{z} \\ c\sigma _{z} &{} bII \end{array} \right) \nonumber \\= & {} \left( \begin{array}{cc} \widetilde{X}II &{} \sqrt{T_{c}}\widetilde{Z}\sigma _{z} \\ \sqrt{T_{c}}\widetilde{Z}\sigma _{z} &{} T_{c}\left( \widetilde{Y}+\chi _{\mathrm{tot}}\right) II \end{array} \right) , \end{aligned}$$
(18)

where \(\chi _{\mathrm{tot}}\) is the same definition as Eq. (9), and

$$\begin{aligned} \widetilde{X}&=\frac{4W_{1}^{2}W_{2}^{2}}{P_{1}\left( 1-W_{2}^{2}\right) ^{3}}-1, \nonumber \\ \widetilde{Y}&=\frac{2W_{1}^{2}W_{2}^{2}\left( 1+W_{2}^{2}\right) }{ P_{1}\left( 1-W_{2}^{2}\right) ^{3}}-1, \nonumber \\ \widetilde{Z}&=\frac{4W_{1}^{2}W_{2}^{3}}{P_{1}\left( 1-W_{2}^{2}\right) ^{3}}. \end{aligned}$$
(19)

Similar to the derivation of Eq. (10), by using Eq. (18), one can obtain the Shannon mutual information \(\widetilde{I}\left( A{:}B\right) \) as the following form

$$\begin{aligned} \widetilde{I}\left( A{:}B\right) =\log _{2}\frac{\left( a+1\right) \left( b+1\right) }{\left( a+1\right) \left( b+1\right) -c^{2}}. \end{aligned}$$
(20)

To derive the Holevo bound \(\widetilde{\chi }\left( B{:}E\right) \), we assume that Eve purifies the whole system \(\rho _{A_{1}\widetilde{B}_{1}E}\), so that

$$\begin{aligned} \widetilde{\chi }\left( B{:}E\right)= & {} \widetilde{S}\left( E\right) - \widetilde{S}\left( E|B\right) \nonumber \\= & {} \widetilde{S}\left( A_{1}\widetilde{B}_{1}\right) -\widetilde{S}\left( A_{1}|\widetilde{B}_{1}^{m_{B}}\right) , \nonumber \\= & {} \underset{i=1}{\overset{2}{\sum }}G\left( \frac{\lambda _{i}-1}{2}\right) -G\left( \frac{\lambda _{3}-1}{2}\right) , \end{aligned}$$
(21)

where the von Neumann entropy \(G\left( \varsigma \right) \) has been given in Eq. (12), and

$$\begin{aligned} \lambda _{1,2}^{2}= & {} \frac{\varDelta \pm \sqrt{\varDelta ^{2}-4\xi ^{2}}}{2},\nonumber \\ \lambda _{3}= & {} a-{c^{2}}/({b+1}), \end{aligned}$$
(22)

with

$$\begin{aligned} \varDelta&=a^{2}+b^{2}-2c^{2}, \nonumber \\ \xi&=ab-c^{2}. \end{aligned}$$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Zhong, H., Wu, X. et al. Continuous-variable measurement-device-independent quantum key distribution via quantum catalysis. Quantum Inf Process 19, 346 (2020). https://doi.org/10.1007/s11128-020-02859-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02859-3

Keywords

Navigation