Abstract
The continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) is a promising candidate for the immunity to side-channel attacks, but unfortunately seems to face the limitation of transmission distance in contrast to discrete-variable (DV) counterpart. In this paper, we suggest a method of improving the performance of CV-MDI-QKD involving the achievable secret key rate and transmission distance by using zero-photon catalysis (ZPC), which is indeed a noiseless attenuation process. The numerical simulation results show that the transmission distance of ZPC-based CV-MDI-QKD under the extreme asymmetric case is better than that of the original protocol. Attractively, in contrast to the previous single-photon subtraction (SPS)-based CV-MDI-QKD, the proposed scheme enables a higher secret key rate and a longer transmission distance. In particular, the ZPC-based CV-MDI-QKD can tolerate more imperfections of detectors than both the original protocol and the SPS-based CV-MDI-QKD.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)
Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)
Zhang, Y.C., Li, Z.Y., Chen, Z.Y., Weedbrook, C., Zhao, Y.J., Wang, X.Y., Huang, Y.D., Xu, C.C., Zhang, X.X., Wang, Z.Y., Li, M., Zhang, X.Y., Zheng, Z.Y., Chu, B.J., Gao, X.Y., Meng, N., Cai, W.W., Wang, Z., Wang, G., Yu, S., Guo, H.: Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 4, 035006 (2019)
Zhang, Y.C., Chen, Z.Y., Pirandola, S., Wang, X.Y., Zhou, C., Chu, B.J., Zhao, Y.J., Xu, B.J., Yu, S., Guo, H.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125, 010502 (2020)
Zhang, G., Haw, J.Y., Cai, H., Xu, F., Assad, S.M., Fitzsimons, J.F., Zhou, X., Zhang, Y., Yu, S., Wu, J., Ser, W., Kwek, L.C., Liu, A.Q.: An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics 13, 839–842 (2019)
Pirandola, S. Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J., Razavi, M., Shaari, J.S., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography (2019). arXiv:1906.01645 [quant-ph]
Filip, R.: Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 77(2), 022310 (2008)
Gessner, M., Pezze, L., Smerzi, A.: Efficient entanglement criteria for discrete, continuous, and hybrid variables. Phys. Rev. A 94(2), 020101(R) (2016)
Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200501 (2008)
Ralph, T.C.: Security of continuous-variable quantum cryptography. Phys. Rev. A 62(6), 062306 (2000)
Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)
Lodewyck, J., Bloch, M., Garcia-Patron, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangie, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)
Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93(17), 170504 (2004)
Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013)
Grosshans, F.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94(2), 020504 (2005)
Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)
Kimble, H.J.: The quantum internet. Nature (London) 453, 1023 (2008)
Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88(2), 022339 (2013)
Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A 87(6), 062329 (2013)
Qin, H., Kumar, R., Alleaume, R.: Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution. Phys. Rev. A 94(1), 012325 (2016)
Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)
Marshall, K., Weedbrook, C.: Device-independent quantum cryptography for continuous variables. Phys. Rev. A 90(4), 042311 (2014)
Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9, 397 (2015)
Zhang, X.Y., Zhang, Y.C., Zhao, Y.J., Wang, X.Y., Yu, S., Guo, H.: Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 96(4), 042334 (2017)
Li, Z.Y., Zhang, Y.C., Xu, F.H., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052301 (2014)
Ma, X.C., Sun, S.H., Jiang, M.S., Gui, M., Liang, L.M.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(4), 042335 (2014)
Kumar, C., Singh, J., Bose, S., Arvind: Coherence assisted non-Gaussian measurement device independent quantum key distribution. Phys. Rev. A 100(5), 052329 (2019)
Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)
Chen, Z.Y., Zhang, Y.C., Wang, G., Li, Z.Y., Guo, H.: Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks. Phys. Rev. A 98(1), 012314 (2018)
Zhang, Y.C., Li, Z.Y., Yu, S., Gu, W.Y., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)
Xu, F., Qi, B., Liao, Z., Lo, H.K.: Long distance measurement-device-independent quantum key distribution with entangled photon sources. Appl. Phys. Lett. 103(6), 061101 (2013)
Ma, H.X., Huang, P., Bai, D.Y., Wang, T., Wang, S.Y., Bao, W.S., Zeng, G.H.: Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation. Phys. Rev. A 99(2), 022322 (2019)
Ye, W., Guo, Y., Xia, Y., Zhong, H., Zhang, H., Ding, J.Z., Hu, L.Y.: Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Phys. Sin. 69, 060301 (2020)
Wang, P., Wang, X.Y., Li, Y.M.: Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers. Phys. Rev. A 99(4), 042309 (2019)
Zhao, Y.J., Zhang, Y.C., Xu, B.J., Yu, S., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction. Phys. Rev. A 97(4), 042328 (2018)
Ma, H.X., Huang, P., Bai, D.Y., Wang, S.Y., Bao, W.S., Zeng, G.H.: Continuous-variable measurement-device-independent quantum key distribution with photon subtraction. Phys. Rev. A 97(4), 042329 (2018)
Hu, L.Y., Al-amri, M., Liao, Z.Y., Zubairy, M.S.: Entanglement improvement via a quantum scissor in a realistic environment. Phys. Rev. A 100, 052322 (2019)
Bartley, T.J., Crowley, P.J.D., Datta, A., Nunn, J., Zhang, L., Walmsley, I.: Strategies for enhancing quantum entanglement by local photon subtraction. Phys. Rev. A 87(2), 022313 (2013)
Wu, J.N., Liu, S.Y., Hu, L.Y., Huang, J.H., Duan, Z.L., Ji, Y.H.: Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition. J. Opt. Soc. Am. B 32(11), 2299 (2015)
Li, Z.Y., Zhang, Y.C., Wang, X.Y., Xu, B.J., Peng, X., Guo, H.: Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution. Phys. Rev. A 93(1), 012310 (2016)
Lvovsky, A.I., Mlynek, J.: Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. Phys. Rev. Lett. 88(25), 250401 (2002)
Guo, Y., Ye, W., Zhong, H., Liao, Q.: Continuous-variable quantum key distribution with non-Gaussian quantum catalysis. Phys. Rev. A 99(3), 032327 (2019)
Ye, W., Zhong, H., Liao, Q., Huang, D., Hu, L.Y., Guo, Y.: Improvement of self-referenced continuous-variable quantum key distribution with quantum photon catalysis. Opt. Express 27(12), 17186–17198 (2019)
Zhang, S.L., Zhang, X.D.: Photon catalysis acting as noiseless linear amplification and its application in coherence enhancement. Phys. Rev. A 97(4), 043830 (2018)
Hu, L.Y., Wu, J.N., Liao, Z.Y., Zubairy, M.S.: Multiphoton catalysis with coherent state input: nonclassicality and decoherence. J. Phys. B At. Mol. Phys. 49(17), 175504 (2016)
Hu, L., Liao, Z., Zubairy, M.S.: Continuous-variable entanglement via multiphoton catalysis. Phys. Rev. A 95(1), 012310 (2017)
Zhou, W.D., Ye, W., Liu, C.J., Hu, L.Y., Liu, S.Q.: Entanglement improvement of entangled coherent state via multiphoton catalysis. Laser Phys. Lett. 15(6), 065203 (2018)
Pirandola, S.: Entanglement reactivation in separable environments. New J. Phys. 15(11), 113046 (2013)
Navascues, M., Grosshans, F., Acin, A.: Optimality of gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97(19), 190502 (2006)
Garcia-Patron, R., Cerf, N.J.: Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)
Wolf, M.M., Giedke, G., Cirac, J.I.: Extremality of Gaussian quantum states. Phys. Rev. Lett. 96(8), 080502 (2006)
Fiurasek, J., Cerf, N.J.: Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution. Phys. Rev. A 86(6), 060302(R) (2012)
Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)
Ren, S., Kumar, R., Wonfor, A., Tang, X., Penty, R., White, I.: Reference pulse attack on continuous variable quantum key distribution with local local oscillator under trusted phase noise. J. Opt. Soc. Am. B 36(3), B7–B15 (2019)
Zhang, H., Fang, J., He, G.Q.: Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 86(2), 022338 (2012)
Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 4, 726–730 (2008)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572529, 61821407, 11664017, 11964013), the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province, and the Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No. CX20190126) and the Postgraduate Independent Exploration and Innovation Project of Central South University (Grant No. 2019zzts070).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A: The secret key rate of the SPS-based CV-MDI-QKD under one-mode collective Gaussian attacks
Appendix A: The secret key rate of the SPS-based CV-MDI-QKD under one-mode collective Gaussian attacks
To make a comparison of the proposed ZPC-based CV-MDI-QKD scheme, here we present the SPS-based CV-MDI-QKD protocol, as shown in Fig. 10, where Alice and Bob respectively generates a two-mode squeezed vacuum state, \(\mathrm{EPR}_{1}\) and \(\mathrm{EPR}_{2}\), with the same variance \(V_{A}=V_{B}\). Then, one half of \(\mathrm{EPR}_{1}\) is kept by Alice to perform the heterodyne detection, the other half of \(\mathrm{EPR}_{1}\) after the SPS operation is sent to Charlie through an insecure quantum channel with a length \(L_{AC}\). Independently, one half of \(\mathrm{EPR}_{2}\) is retained by Bob to perform the heterodyne detection, the other half of \(\mathrm{EPR}_{2}\) is directly sent to Charlie through the quantum channel with a length \(L_{BC}\). For the sake of discussions, we assume that both channels are same as the cases of our proposed scheme, and Eve implements one-mode collective Gaussian attacks on the quantum channels. In addition, it should be noted that, different from the ZPC operation, the SPS is a common non-Gaussian operation, which leads to make it impossible for directly using typical Gaussian methods to derive the secret key rate. Fortunately, according to the Gaussian optimality theorem [48,49,50], the lower bound of asymptotic secret key rate \(K_{\mathrm{asy}}\) of reverse reconciliation under one-mode collective attack is
where \(P_{1}\) represents the success probability of implementing the SPS, \( \beta ,\widetilde{I}\left( A{:}B\right) \) and \(\widetilde{\chi }\left( B {:}E\right) \) are the same definitions as Eq. (8).
(Color online) Schematic diagram of the CV-MDI-QKD protocol using the SPS operation (purple box). a EB scheme of the SPS-based CV-MDI-QKD. b Equivalent one-way protocol of the EB scheme of the SPS-based CV-MDI-QKD under the assumption that Eve is aware of Charlie, and Bob’s EPR\(_{2}\) state and displacement except for heterodyne detection. EPR\(_{1}\) and EPR\(_{2}\): Alice’s and Bob’s two-mode squeezed state, respectively. Het: heterodyne detection. Hom: homodyne detection. \(\left\{ X_{A},P_{A}\right\} \) and \( \left\{ X_{B},P_{B}\right\} \): Alice’s and Bob’s measurement results of heterodyne detection, respectively. \(X_{C_{1}},P_{C_{2}}\): measurement results of homodyne detection of measuring the X and P quadrature, respectively. PNRD: photon number resolving detector; \(\left| 1\right\rangle \left\langle 1\right| \): single-photon Fock state; \(T_{A}( \varepsilon _{A})\), \(T_{B}\left( \varepsilon _{B}\right) \): channel parameters for Alice-Charlie and Bob-Charlie. \(T_{c}( \varepsilon _{\mathrm{th}})\): equivalent channel transmittance (excess noise). \(D\left( \beta \right) \): displacement operation of Bob
In order to obtain the exact form of Eq. (13), we first make a review about the SPS operation (purple box) shown in Fig. 10, which can be viewed as an equivalent operator
Thus, the state \(\left| \varPsi \right\rangle _{A_{1}\widetilde{A}_{2}}\) after operating single-photon subtraction is expressed as
with
and
According to the equivalent one-way protocol, after the state \(\left| \varPsi \right\rangle _{A_{1}\widetilde{A}_{2}}\) passing through the quantum channel characterized by the transmission efficiency \(T_{c}\) and excess noise \(\varepsilon _{\mathrm{th}}\), the covariance matrix \(\varGamma _{A\widetilde{B} _{1}}\) can be given by
where \(\chi _{\mathrm{tot}}\) is the same definition as Eq. (9), and
Similar to the derivation of Eq. (10), by using Eq. (18), one can obtain the Shannon mutual information \(\widetilde{I}\left( A{:}B\right) \) as the following form
To derive the Holevo bound \(\widetilde{\chi }\left( B{:}E\right) \), we assume that Eve purifies the whole system \(\rho _{A_{1}\widetilde{B}_{1}E}\), so that
where the von Neumann entropy \(G\left( \varsigma \right) \) has been given in Eq. (12), and
with
Rights and permissions
About this article
Cite this article
Ye, W., Zhong, H., Wu, X. et al. Continuous-variable measurement-device-independent quantum key distribution via quantum catalysis. Quantum Inf Process 19, 346 (2020). https://doi.org/10.1007/s11128-020-02859-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02859-3