Asymmetric scaling scheme over the two dimensions of a quantum image | Quantum Information Processing Skip to main content
Log in

Asymmetric scaling scheme over the two dimensions of a quantum image

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Although quantum image scaling algorithms have been widely studied in recent years, almost all of them require the quantum image to be enlarged or reduced simultaneously in the horizontal and vertical directions. However, the scaling schemes that enlarge the quantum image in one direction and shrink it in the other direction are rarely involved. In this paper, a quantum image scaling scheme based on the extension of the bilinear interpolation method is proposed to achieve asymmetric scaling over the two dimensions of a quantum image for the first time. Firstly, the improved novel-enhanced quantum representation of digital images (INEQR) is employed to represent a \( 2^{{n_{1} }} \times 2^{{n_{2} }} \) quantum image, and the bilinear interpolation is improved to use two adjacent pixels in the original image for interpolation. Then, the concrete circuits for the asymmetric scaling of quantum images are designed. Finally, the simulation results are given, and the complexity of the quantum circuits and the peak signal-to-noise ratio (PSNR) are used to quantitatively compare with the similar scheme proposed in another paper. The results show that the proposed scheme has lower computational complexity and better scaling effect than another scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

figure from Ref. [20]

Fig. 9

figure from Ref. [20]

Fig. 10

figure from Ref. [20]

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vlasov, A.Y.: Quantum computations and images recognition. arXiv:quant-ph/9703010. (1997)

  2. Beach, G., Lomont, C., Cohen, C.: Quantum image processing (QuIP). In: Proceedings—Applied Imagery Pattern Recognition Workshop (2004)

  3. Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: New trends in artificial intelligence. In: IJCAI International Joint Conference on Artificial Intelligence (2003)

  4. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)

  5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  6. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  7. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  8. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12, 2269–2290 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13, 991–1011 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Yan, F., Iliyasu, A.M., Venegas-andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40, (2010)

  14. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14, 1589–1604 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14, 4001–4026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15, 37–64 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhou, R.G., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, (2017)

  19. Zhou, R.G., Liu, X., Luo, J.: Quantum Circuit Realization of the Bilinear Interpolation Method for GQIR. Int. J. Theor. Phys. 56, 2966–2980 (2017)

    Article  MathSciNet  Google Scholar 

  20. Li, P., Liu, X.: Bilinear interpolation method for quantum images based on quantum Fourier transform. Int. J. Quantum Inf. 16, 1850031 (2018)

    Article  MathSciNet  Google Scholar 

  21. Zhou, R., Hu, W., Luo, G., Liu, X., Fan, P.: Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf. Process. 17, 166 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhou, R.-G., Cheng, Y., Liu, D.: Quantum image scaling based on bilinear interpolation with arbitrary scaling ratio. Quantum Inf. Process. 18(9), 267 (2019)

    Article  ADS  Google Scholar 

  23. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13, 1223–1236 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  24. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13, 1545–1551 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert Image Scrambling. Int. J. Theor. Phys. 53, 2463–2484 (2014)

    Article  Google Scholar 

  26. Li, Y.C., Zhou, R., Xu, R.Q., Luo, J., Jiang, S.-X.: A quantum mechanics-based framework for EEG signal feature extraction and classification. IEEE Trans. Emerg. Top. Comput. (2020). https://doi.org/10.1109/tetc.2020.3000734

    Article  Google Scholar 

  27. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. (Ny) 186, 126–149 (2012)

    Article  MathSciNet  Google Scholar 

  28. Li, Y.C., Zhou, R.-G., Xu, R.Q., Luo, J., Hu, W.W.: A quantum deep convolutional neural network for image recognition. Quantum Sci. Technol. 5(4), 044003 (2020). https://doi.org/10.1088/2058-9565/ab9f93

    Article  ADS  Google Scholar 

  29. Zhou, R.G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 1–21 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  31. Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice Hall, New Jersey (2007)

    Google Scholar 

  32. Parker, J.A., Kenyon, R.V., Troxel, D.E.: Comparison of Interpolating Methods for Image Resampling. IEEE Trans. Med, Imaging (1983)

    Book  Google Scholar 

  33. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 1406–1418 (2011)

    Article  MathSciNet  Google Scholar 

  34. Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: Proc. 2009 IEEE Comput. Soc. Annu. Symp. VLSI, ISVLSI 2009, pp. 229–234 (2009)

  35. Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: Proc. IEEE Conf. Nanotechnol, pp. 1430–1435 (2011)

  36. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8, 208–213 (2009)

    Article  Google Scholar 

  37. Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16(6), 152 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: Proc. IEEE Int. Conf. VLSI Des, pp. 545–550 (2014)

  39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Plan under Grant Nos. 2018YFC1200200 and 2018YFC1200205.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Cheng or Xiaofang Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, RG., Cheng, Y., Qi, X. et al. Asymmetric scaling scheme over the two dimensions of a quantum image. Quantum Inf Process 19, 343 (2020). https://doi.org/10.1007/s11128-020-02837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02837-9

Keywords

Navigation