Abstract
We investigate the dissipative evolution of the Einstein–Podolsky–Rosen steering and the teleportation fidelity of the dynamical Casimir radiations in the thermal equilibrium environments. We consider two kinds of thermal equilibrium environments. One is the initial environments of the samples which produced the nonclassical dynamical Casimir radiations. The other is the thermal equilibrium environments in the transmission lines which are coupled to a low-noise amplifier of low temperature. In this paper, we observe that a high temperature of the environments results in a faster decoherence of steering and fidelity. The large detuning will accelerate the sudden death of one-way steering from Bob to Alice and fidelity, or vice versa. Moreover, we observe that if most of the damping is placed on Bob, the decoherence of one-way steering from Alice to Bob will be faster, while the one-way steering from Bob to Alice and fidelity are the opposite. However, when most of the thermal noise is placed on Alice in the transmission lines, the steering and fidelity are the most insensitive. It shows that it is important to choose the suitable asymmetric noise channel to protect the directional Einstein–Podolsky–Rosen steering.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Moore, G.T.: Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 11, 2679 (1970)
Irish, E.K.: Generalized rotating-wave approximation for arbitrarily large coupling. Phys. Rev. Lett. 99, 173601 (2007)
Uhlmann, M., Plunien, G., Schutzhold, R., Soff, G.: Resonant cavity photon creation via the dynamical Casimir effect. Phys. Rev. Lett. 93, 193601 (2004)
Dodonov, V.V.: Current status of the dynamical Casimir effect. Phys. Scr. 82, 038105 (2010)
Dodonov, V.V., Klimov, A.B., Manko, V.I.: Generation of squeezed states in a resonator with a moving wall. Phys. Lett. A 149, 225 (1990)
Dalvit, D.A.R., Neto, P.A.M., Mazzitelli, F.D.: Fluctuations, dissipation and the dynamical Casimir effect. Lect. Notes Phys. 834, 419 (2011)
Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F.: Colloquium: stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1 (2012)
CRego, A.L., Silva, H.O., Alves, D.T., Farina, C.: New signatures of the dynamical Casimir effect in a superconducting circuit. Phys. Rev. D 90, 025003 (2014)
Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I.: Dynamical Casimir effect in a double tunable superconducting circuit. Phys. Rev. A 93, 032501 (2016)
Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I.: Dynamical Casimir effect in superconducting circuits: a numerical approach. Phys. Rev. A 98, 022512 (2018)
Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376 (2011)
Johansson, J.R., Johansson, G., Wilson, C.M., Delsing, P., Nori, F.: Nonclassical microwave radiation from the dynamical Casimir effect. Phys. Rev. A 87, 043804 (2013)
Samos-Saenz de Buruaga, D.N., Sabin, C.: Quantum coherence in the dynamical Casimir effect. Phys. Rev. A 95, 022307 (2007)
Sabín, C., Adesso, G.: Generation of quantum steering and interferometric power in the dynamical Casimir effect. Phys. Rev. A 92, 042107 (2015)
Zhang, X., Liu, H., Wang, Z.H., Zheng, T.Y.: Asymmetric quantum correlations in the dynamical Casimir effect. Sci. Rep. 9, 1 (2019)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)
Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)
Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009)
Lee, C.W., Ji, S.W., Nha, H.: Quantum steering for continuous-variable states. J. Opt. Soc. Am. B Opt. Phys. 30, 2483 (2013)
Skrzypczyk, P., Navascués, M., Cavalcantik, D.: Quantifying Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)
Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double-quantum-dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)
Mohamed, A.-B.A., Eleuch, H.: Quantum correlation control for two semiconductor microcavities connected by an optical fiber. Phys. Scr. 92, 065101 (2017)
Mohamed, A.-B.A.: Non-local correlations via Wigner–Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D 71, 261 (2017)
Mohamed, A.-B.A.: Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf. Process. 17, 96 (2018)
Mohamed, A.-B.A., Eleuch, H., Raymond Ooi, C.H.: Non-locality correlation in two driven qubits inside an open coherent cavity: trace norm distance and maximum Bell function. Sci. Rep. 9, 19632 (2019)
Dodonov, V.V., Andreata, M.A.: Squeezing and photon distribution in a vibrating cavity. J. Phys. A Gen. Phys. 32, 6711 (1999)
Aggarwal, N., Bhattacherjee, A.B., Banerjee, A., Mohan, M.: Influence of periodically modulated cavity field on the generation of atomic-squeezed states. J. Phys. B At. Mol. Opt. Phys. 48, 115501 (2015)
Stassi, R., Liberato, S.D., Garziano, L., Spagnolo, B., Spagnolo, S.: Quantum control and long-range quantum correlations in dynamical Casimir arrays. Phys. Rev. A 92, 013830 (2015)
Agustí, A., Solano, E., Sabín, C.: Entanglement through qubit motion and the dynamical Casimir effect. Phys. Rev. A 99, 052328 (2019)
Scheel, S., Welsch, D.G.: Entanglement generation and degradation by passive optical devices. Phys. Rev. A 64, 063811 (2001)
Wilson, D., Lee, J., Kim, M.S.: Entanglement of a two-mode squeezed state in a phase-sensitive Gaussian environment. J. Mod. Opt. 50, 1809 (2003)
Bowen, W.P., Schnabel, R., Lam, P.K., Ralph, T.C.: Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003)
Rosaleszarate, L., Teh, R.Y., Kiesewetter, S., Brolis, A., Ng, K., Reid, M.D.: Decoherence of Einstein–Podolsky–Rosen steering. J. Opt. Soc. Am. B 32, A82 (2015)
Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)
Serafini, A., Illuminati, F., Paris, M.G.A., Siena, S.D.: Entanglement and purity of two-mode Gaussian states in noisy channels. Phys. Rev. A 69, 022318 (2004)
He, Q.Y., Gong, Q.H., Reid, M.D.: Classifying directional Gaussian entanglement, Einstein–Podolsky–Rosen steering, and discord. Phys. Rev. Lett. 114, 060402 (2015)
Pirandola, S., Mancini, S.: Quantum teleportation with continuous variables: a survey. Laser Phys. 16, 1418 (2006)
Funding
This study was supported by Natural National Science Foundation of China (NSFC) (11175044, 11347190).
Author information
Authors and Affiliations
Contributions
YL conceived the idea and performed the calculations with the aid of TZ and XZ. YL, TZ and XZ performed the analyses. YL wrote the manuscript with the input of XZ. All authors contributed to the paper.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Long, Y., Zhang, X. & Zheng, T. Decoherence of Einstein–Podolsky–Rosen steering and the teleportation fidelity in the dynamical Casimir effect. Quantum Inf Process 19, 322 (2020). https://doi.org/10.1007/s11128-020-02833-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02833-z