Pulse–qubit interaction in a superconducting circuit under linearly dissipative environment | Quantum Information Processing Skip to main content

Advertisement

Log in

Pulse–qubit interaction in a superconducting circuit under linearly dissipative environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Microwave pulses are used ubiquitously to control and measure qubits fabricated on superconducting circuits. Due to continual environmental coupling, qubits undergo decoherence either when it is free or when it is coupled to an incident pulse. We study theoretically the decoherence-induced effects when a qubit is subject to the driving of time-dependent pulses, which can accomplish geometric logic gating, under a dissipative environment with linear spectral distribution. We find that a transmissible pulse of finite width adopts an asymmetric multi-hump shape, due to the imbalanced pumping and emitting rates of the qubit during inversion when the environment is present. The pulse shape reduces to a solitonic pulse at vanishing dissipation and a pulse train at strong dissipation. We give detailed analysis of the environmental origin from both the perspectives of envelope and phase of the propagating pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031–1042 (2008)

    Article  ADS  Google Scholar 

  2. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)

    Article  ADS  Google Scholar 

  3. Ian, H., Liu, Y., Nori, F.: Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Phys. Rev. A 81, 063823 (2010)

    Article  ADS  Google Scholar 

  4. Martinis, J.M., Cooper, K.B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K.D., Cicak, K., Oh, S., Pappas, D.P., Simmonds, R.W., Yu, C.C.: Decoherence in Josephson Qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005)

    Article  ADS  Google Scholar 

  5. Martinis, J.M., Nam, S., Aumentado, J., Lang, K.M., Urbina, C.: Decoherence of a superconducting qubit due to bias noise. Phys. Rev. B 67, 094510 (2003)

    Article  ADS  Google Scholar 

  6. Bialczak, R.C., McDermott, R., Ansmann, M., Hofheinz, M., Katz, N., Lucero, E., Neeley, M., O’Connell, A.D., Wang, H., Cleland, A.N., Martinis, J.M.: 1/f Flux Noise in Josephson Phase Qubits. Phys. Rev. Lett. 99, 187006 (2007)

    Article  ADS  Google Scholar 

  7. Yoshihara, F., Harrabi, K., Niskanen, A.O., Nakamura, Y., Tsai, J.S.: Decoherence of Flux Qubits due to 1/f Flux Noise. Phys. Rev. Lett. 97, 167001 (2006)

    Article  ADS  Google Scholar 

  8. Ithier, G., Collin, E., Joyez, P., Meeson, P.J., Vion, D., Esteve, D., Chiarello, F., Shnirman, A., Makhlin, Y., Schriefl, J., Schön, G.: Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005)

    Article  ADS  Google Scholar 

  9. Mallet, F., Ong, F.R., Palacios-Laloy, A., Nguyen, F., Bertet, P., Vion, D., Esteve, D.: Single-shot qubit readout in circuit quantum electrodynamics. Nat. Phys. 5, 791–795 (2009)

    Article  Google Scholar 

  10. Yu, S., Gao, Y., Ian, H.: Perturbative dissipation dynamics of a weakly driven cavity QED system: generalized microscopic master equation. Quantum Inf. Process. 16, 283 (2017)

    Article  MathSciNet  Google Scholar 

  11. Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V.: Detection of geometric phases in superconducting nanocircuits. Nature 407, 355–358 (2000)

    Article  ADS  Google Scholar 

  13. Huang, Y.-Y., Wu, Y.-K., Wang, F., Hou, P.-Y., Wang, W.-B., Zhang, W.-G., Lian, W.-Q., Liu, Y.-Q., Wang, H.-Y., Zhang, H.-Y., He, L., Chang, X.-Y., Xu, Y., Duan, L.-M.: Experimental realization of robust geometric quantum gates with solid-state spins. Phys. Rev. Lett. 122, 010503 (2019)

    Article  ADS  Google Scholar 

  14. Tian, L., Lloyd, S., Orlando, T.P.: Decoherence and relaxation of a superconducting quantum bit during measurement. Phys. Rev. B 65, 144516 (2002)

    Article  ADS  Google Scholar 

  15. You, J.Q., Hu, X., Ashhab, S., Nori, F.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515 (2007)

    Article  ADS  Google Scholar 

  16. McDermott, R.: Materials origins of decoherence in superconducting qubits. IEEE Trans. Appl. Supercond. 19, 2–13 (2009)

    Article  ADS  Google Scholar 

  17. Caldeira, A.O., Leggett, A.J.: Quantum tunnelling in a dissipative system. Ann. Phys. 149, 374–456 (1983)

    Article  ADS  Google Scholar 

  18. Leggett, A.J.: Quantum tunneling in the presence of an arbitrary linear dissipation mechanism. Phys. Rev. B 30, 1208–1218 (1984)

    Article  ADS  Google Scholar 

  19. Wei, L.F., Liu, Y., Nori, F.: Generation and control of Greenberger–Horne–Zeilinger Entanglement in superconducting circuits. Phys. Rev. Lett. 96, 246803 (2006)

    Article  ADS  Google Scholar 

  20. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010)

    Article  ADS  Google Scholar 

  21. Kohler, S., Utermann, R., Hänggi, P., Dittrich, T.: Coherent and incoherent chaotic tunneling near singlet-doublet crossings. Phys. Rev. E 58, 7219–7230 (1998)

    Article  ADS  Google Scholar 

  22. Ferrón, A., Domínguez, D., Sánchez, M.J.: Tailoring population inversion in Landau–Zener–Stuckelberg interferometry of flux qubits. Phys. Rev. Lett. 109, 237005 (2012)

    Article  ADS  Google Scholar 

  23. Ferrón, A., Domínguez, D., Sánchez, M.J.: Dynamic transition in Landau–Zener–Stuckelberg interferometry of dissipative systems: the case of the flux qubit. Phys. Rev. B 93, 064521 (2016)

    Article  ADS  Google Scholar 

  24. Caldeira, A.O., Leggett, A.J.: Influence of dissipation on quantum tunneling in Macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981)

    Article  ADS  Google Scholar 

  25. Widom, A., Clark, T.D.: Probabilities for Quantum Tunneling through a Barrier with Linear Passive Dissipation. Phys. Rev. Lett. 48, 63–65 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  26. Gao, Y., Ian, H.: Decoherence-free propagation and ramification of a solitary pulse. arXiv:1811.05126 (2018)

  27. Basov, N.G., Ambartsumyan, R.V., Zuev, V.S., Kryukov, P.G., Letokhov, V.S.: Nonlinear amplification of light pulses. Sov. J. Exp. Theor. Phys. 23, 16 (1966)

    ADS  Google Scholar 

  28. McCall, S.L., Hahn, E.L.: Self-Induced transparency by pulsed coherent light. Phys. Rev. Lett. 18, 908–911 (1967)

    Article  ADS  Google Scholar 

  29. Lamb, G.L.: Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev. Mod. Phys. 43, 99–124 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  30. Eichler, C., Lang, C., Fink, J.M., Govenius, J., Filipp, S., Wallraff, A.: Observation of entanglement between itinerant microwave photons and a superconducting qubit. Phys. Rev. Lett. 109, 240501 (2012)

    Article  ADS  Google Scholar 

  31. Wen, P.Y., Kockum, A.F., Ian, H., Chen, J.C., Nori, F., Hoi, I.-C.: Reflective amplification without population inversion from a strongly driven superconducting qubit. Phys. Rev. Lett. 120, 063603 (2018)

    Article  ADS  Google Scholar 

  32. Wen, P.Y., Lin, K.-T., Kockum, A.F., Suri, B., Ian, H., Chen, J.C., Mao, S.Y., Chiu, C.C., Delsing, P., Nori, F., Lin, G.-D., Hoi, I.-C.: Large collective lamb shift of two distant superconducting artificial atoms. Phys. Rev. Lett. 123, 233602 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y.-B. Gao acknowledges the support of the National Natural Science Foundation of China under Grant No. 11674017. H. I. acknowledges the support by FDCT of Macau under Grants 065/2016/A2 and 0130/2019/A3, University of Macau under Grant MYRG2018-00088-IAPME, and National Natural Science Foundation of China under Grant No. 11404415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou Ian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Jin, S., Zhang, Y. et al. Pulse–qubit interaction in a superconducting circuit under linearly dissipative environment. Quantum Inf Process 19, 313 (2020). https://doi.org/10.1007/s11128-020-02814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02814-2

Keywords

Navigation