Abstract
Microwave pulses are used ubiquitously to control and measure qubits fabricated on superconducting circuits. Due to continual environmental coupling, qubits undergo decoherence either when it is free or when it is coupled to an incident pulse. We study theoretically the decoherence-induced effects when a qubit is subject to the driving of time-dependent pulses, which can accomplish geometric logic gating, under a dissipative environment with linear spectral distribution. We find that a transmissible pulse of finite width adopts an asymmetric multi-hump shape, due to the imbalanced pumping and emitting rates of the qubit during inversion when the environment is present. The pulse shape reduces to a solitonic pulse at vanishing dissipation and a pulse train at strong dissipation. We give detailed analysis of the environmental origin from both the perspectives of envelope and phase of the propagating pulse.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031–1042 (2008)
You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)
Ian, H., Liu, Y., Nori, F.: Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Phys. Rev. A 81, 063823 (2010)
Martinis, J.M., Cooper, K.B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K.D., Cicak, K., Oh, S., Pappas, D.P., Simmonds, R.W., Yu, C.C.: Decoherence in Josephson Qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005)
Martinis, J.M., Nam, S., Aumentado, J., Lang, K.M., Urbina, C.: Decoherence of a superconducting qubit due to bias noise. Phys. Rev. B 67, 094510 (2003)
Bialczak, R.C., McDermott, R., Ansmann, M., Hofheinz, M., Katz, N., Lucero, E., Neeley, M., O’Connell, A.D., Wang, H., Cleland, A.N., Martinis, J.M.: 1/f Flux Noise in Josephson Phase Qubits. Phys. Rev. Lett. 99, 187006 (2007)
Yoshihara, F., Harrabi, K., Niskanen, A.O., Nakamura, Y., Tsai, J.S.: Decoherence of Flux Qubits due to 1/f Flux Noise. Phys. Rev. Lett. 97, 167001 (2006)
Ithier, G., Collin, E., Joyez, P., Meeson, P.J., Vion, D., Esteve, D., Chiarello, F., Shnirman, A., Makhlin, Y., Schriefl, J., Schön, G.: Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005)
Mallet, F., Ong, F.R., Palacios-Laloy, A., Nguyen, F., Bertet, P., Vion, D., Esteve, D.: Single-shot qubit readout in circuit quantum electrodynamics. Nat. Phys. 5, 791–795 (2009)
Yu, S., Gao, Y., Ian, H.: Perturbative dissipation dynamics of a weakly driven cavity QED system: generalized microscopic master equation. Quantum Inf. Process. 16, 283 (2017)
Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)
Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V.: Detection of geometric phases in superconducting nanocircuits. Nature 407, 355–358 (2000)
Huang, Y.-Y., Wu, Y.-K., Wang, F., Hou, P.-Y., Wang, W.-B., Zhang, W.-G., Lian, W.-Q., Liu, Y.-Q., Wang, H.-Y., Zhang, H.-Y., He, L., Chang, X.-Y., Xu, Y., Duan, L.-M.: Experimental realization of robust geometric quantum gates with solid-state spins. Phys. Rev. Lett. 122, 010503 (2019)
Tian, L., Lloyd, S., Orlando, T.P.: Decoherence and relaxation of a superconducting quantum bit during measurement. Phys. Rev. B 65, 144516 (2002)
You, J.Q., Hu, X., Ashhab, S., Nori, F.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515 (2007)
McDermott, R.: Materials origins of decoherence in superconducting qubits. IEEE Trans. Appl. Supercond. 19, 2–13 (2009)
Caldeira, A.O., Leggett, A.J.: Quantum tunnelling in a dissipative system. Ann. Phys. 149, 374–456 (1983)
Leggett, A.J.: Quantum tunneling in the presence of an arbitrary linear dissipation mechanism. Phys. Rev. B 30, 1208–1218 (1984)
Wei, L.F., Liu, Y., Nori, F.: Generation and control of Greenberger–Horne–Zeilinger Entanglement in superconducting circuits. Phys. Rev. Lett. 96, 246803 (2006)
Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010)
Kohler, S., Utermann, R., Hänggi, P., Dittrich, T.: Coherent and incoherent chaotic tunneling near singlet-doublet crossings. Phys. Rev. E 58, 7219–7230 (1998)
Ferrón, A., Domínguez, D., Sánchez, M.J.: Tailoring population inversion in Landau–Zener–Stuckelberg interferometry of flux qubits. Phys. Rev. Lett. 109, 237005 (2012)
Ferrón, A., Domínguez, D., Sánchez, M.J.: Dynamic transition in Landau–Zener–Stuckelberg interferometry of dissipative systems: the case of the flux qubit. Phys. Rev. B 93, 064521 (2016)
Caldeira, A.O., Leggett, A.J.: Influence of dissipation on quantum tunneling in Macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981)
Widom, A., Clark, T.D.: Probabilities for Quantum Tunneling through a Barrier with Linear Passive Dissipation. Phys. Rev. Lett. 48, 63–65 (1982)
Gao, Y., Ian, H.: Decoherence-free propagation and ramification of a solitary pulse. arXiv:1811.05126 (2018)
Basov, N.G., Ambartsumyan, R.V., Zuev, V.S., Kryukov, P.G., Letokhov, V.S.: Nonlinear amplification of light pulses. Sov. J. Exp. Theor. Phys. 23, 16 (1966)
McCall, S.L., Hahn, E.L.: Self-Induced transparency by pulsed coherent light. Phys. Rev. Lett. 18, 908–911 (1967)
Lamb, G.L.: Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev. Mod. Phys. 43, 99–124 (1971)
Eichler, C., Lang, C., Fink, J.M., Govenius, J., Filipp, S., Wallraff, A.: Observation of entanglement between itinerant microwave photons and a superconducting qubit. Phys. Rev. Lett. 109, 240501 (2012)
Wen, P.Y., Kockum, A.F., Ian, H., Chen, J.C., Nori, F., Hoi, I.-C.: Reflective amplification without population inversion from a strongly driven superconducting qubit. Phys. Rev. Lett. 120, 063603 (2018)
Wen, P.Y., Lin, K.-T., Kockum, A.F., Suri, B., Ian, H., Chen, J.C., Mao, S.Y., Chiu, C.C., Delsing, P., Nori, F., Lin, G.-D., Hoi, I.-C.: Large collective lamb shift of two distant superconducting artificial atoms. Phys. Rev. Lett. 123, 233602 (2019)
Acknowledgements
Y.-B. Gao acknowledges the support of the National Natural Science Foundation of China under Grant No. 11674017. H. I. acknowledges the support by FDCT of Macau under Grants 065/2016/A2 and 0130/2019/A3, University of Macau under Grant MYRG2018-00088-IAPME, and National Natural Science Foundation of China under Grant No. 11404415.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gao, Y., Jin, S., Zhang, Y. et al. Pulse–qubit interaction in a superconducting circuit under linearly dissipative environment. Quantum Inf Process 19, 313 (2020). https://doi.org/10.1007/s11128-020-02814-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02814-2