Improved quantum algorithm for MMSE-based massive MIMO uplink detection | Quantum Information Processing Skip to main content
Log in

Improved quantum algorithm for MMSE-based massive MIMO uplink detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an improved quantum algorithm for the minimum mean square error-based massive multiple-input multiple-output (MIMO) uplink. The new algorithm can reduce the dependency on the assumptions on the input vector, the channel matrix entries and the low rank of the channel matrix, which are indispensable in our previous results. Our improved quantum algorithm applies the quantum block-encoding technology, which depends on the quantum-accessible data structure. Moreover, we design an efficient algorithm for outputting classical data, which makes sure that output data can be utilized in classical devices. Both theoretically mathematical analyses and simulation realizations in massive MIMO systems confirm the applicability of the improved quantum algorithm. With desired precision, and theoretical and numerical analysis, our improved quantum algorithm can achieve a quadratic or even an exponential speedup over classical counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590 (2010)

    Article  Google Scholar 

  2. Rusek, F., Persson, D., Lau, B.K., Larsson, E.G., Marzetta, T.L., Edfors, O., Tufvesson, F.: Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)

    Article  ADS  Google Scholar 

  3. Marzetta, T.L., Larsson, E.G., Edfors, O., Tufvesson, F.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  4. Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8(5), 742–758 (2014)

    Article  ADS  Google Scholar 

  5. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)

    Article  Google Scholar 

  6. Yifei, Y., Longming, Z.: Application scenarios and enabling technologies of 5G. China Commun. 11(11), 69–79 (2014)

    Article  Google Scholar 

  7. Yang, S., Hanzo, L.: Fifty years of MIMO detection: the road to large-scale MIMOs. IEEE Commun. Surv. Tutor. 17(4), 1941–1988 (2015)

    Article  Google Scholar 

  8. Verdu, S.: Minimum probability of error for asynchronous Gaussian multiple-access channels. IEEE Trans. Inf. Theory 32(1), 85–96 (1986)

    Article  MathSciNet  Google Scholar 

  9. Van Etten, W.: An optimum linear receiver for multiple channel digital transmission systems. IEEE Trans. Commun. 23(8), 828–834 (1975)

    Article  Google Scholar 

  10. Shnidman, D.: A generalized Nyquist criterion and an optimum linear receiver for a pulse modulation system. Bell Syst. Tech. J. 46(9), 2163–2177 (1967)

    Article  Google Scholar 

  11. Prabhu, H., Rodrigues, J., Edfors, O., Rusek, F.: Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC) 2013, pp. 2710–2715. IEEE

  12. Mueller, A., Kammoun, A., Björnson, E., Debbah, M.: Linear precoding based on polynomial expansion: reducing complexity in massive MIMO. EURASIP J. Wirel. Commun. Netw. 2016(1), 63 (2016)

    Article  Google Scholar 

  13. Yin, B., Wu, M., Cavallaro, J.R., Studer, C.: Conjugate gradient-based soft-output detection and precoding in massive MIMO systems. In: 2014 IEEE Global Communications Conference (GLOBECOM) 2014, pp. 3696–3701. IEEE

  14. Dai, L., Gao, X., Su, X., Han, S., Chih-Lin, I., Wang, Z.: Low-complexity soft-output signal detection based on Gauss–Seidel method for uplink multiuser large-scale MIMO systems. IEEE Trans. Veh. Technol. 64(10), 4839–4845 (2015)

    Article  Google Scholar 

  15. Wu, M., Dick, C., Cavallaro, J.R., Studer, C.: FPGA design of a coordinate descent data detector for large-scale MU-MIMO. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS) 2016, pp. 1894–1897. IEEE

  16. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS) 1994, pp. 124–134. IEEE Computer Society

  17. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. arXiv:quant-ph/9605043 (1996)

  18. Duan, B., Yuan, J., Xu, J., Li, D.: Quantum algorithm and quantum circuit for A-optimal projection: dimensionality reduction. Phys. Rev. A 99(3), 032311 (2019)

    Article  ADS  Google Scholar 

  19. Zhao, Z., Fitzsimons, J.K., Osborne, M.A., Roberts, S.J., Fitzsimons, J.F.: Quantum algorithms for training Gaussian Process. (2018)

  20. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  21. Kerenidis, I., Landman, J., Luongo, A., Prakash, A.: q-Means: A Quantum Algorithm for Unsupervised Machine Learning. arXiv:1812.03584 (2018)

  22. Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96(3), 032301 (2017)

    Article  ADS  Google Scholar 

  23. Kerenidis, I., Prakash, A.: Quantum Recommendation Systems. arXiv:1603.08675 (2016)

  24. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)

    Article  Google Scholar 

  25. Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18(7), 073011 (2016)

    Article  ADS  Google Scholar 

  26. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum nearest-neighbor algorithms for machine learning. Quant. Inf. Comput. 15, 318–358 (2015)

    Google Scholar 

  27. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)

    Article  ADS  Google Scholar 

  29. Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2), 022342 (2016)

    Article  ADS  Google Scholar 

  30. Wang, G.: Quantum algorithm for linear regression. Phys. Rev. A 96(1), 012335 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, C., Wossnig, L.: A Quantum Algorithm for Simulating Non-sparse Hamiltonians. arXiv:1803.08273 (2018)

  32. Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120(5), 050502 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Yu, C.H., Gao, F., Wen, Q.Y.: Quantum algorithms for ridge regression (2017)

  34. Meng, F.-X., Yu, X.-T., Xiang, R.-Q., Zhang, Z.-C.: Quantum algorithm for spectral regression for regularized subspace learning. IEEE Access 7, 4825–4832 (2018)

    Article  Google Scholar 

  35. Li, G., Wang, Y., Luo, Y., Feng, Y.: Quantum Data Fitting Algorithm for Non-sparse Matrices. arXiv:1907.06949 (2019)

  36. Botsinis, P., Ng, S.X., Hanzo, L.: Low-complexity iterative quantum multi-user detection in SDMA systems. In: 2014 IEEE International Conference on Communications (ICC) 2014, pp. 5592–5597. IEEE

  37. Abdullah, Z., Tsimenidis, C.C., Johnston, M.: Quantum-inspired Tabu Search algorithm for antenna selection in massive MIMO systems. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC) 2018, pp. 1–6. IEEE

  38. Alanis, D., Botsinis, P., Ng, S.X., Hanzo, L.: Quantum-assisted routing optimization for self-organizing networks. IEEE Access 2, 614–632 (2014)

    Article  Google Scholar 

  39. Botsinis, P., Alanis, D., Babar, Z., Nguyen, H.V., Chandra, D., Ng, S.X., Hanzo, L.: Quantum-aided multi-user transmission in non-orthogonal multiple access systems. IEEE Access 4, 7402–7424 (2016)

    Article  Google Scholar 

  40. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590 (2010)

    Article  Google Scholar 

  41. Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019)

    Article  Google Scholar 

  42. Chakraborty, S., Gilyén, A., Jeffery, S.: The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. arXiv:1804.01973 (2018)

  43. Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing 2019, pp. 193–204. ACM

  44. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

  45. Van Apeldoorn, J., Gilyén, A., Gribling, S., de Wolf, R.: Quantum SDP-solvers: better upper and lower bounds. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) 2017, pp. 403–414. IEEE

  46. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  47. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys. Rev. A 78(5), 052310 (2008)

    Article  ADS  Google Scholar 

  48. Tulino, A.M., Verdú, S.: Random matrix theory and wireless communications. Found. Trends Commun. Inf. Theory 1(1), 1–182 (2004)

    Article  Google Scholar 

  49. Wang, C.: Marcenko–Pastur distribution and McKay’s law. In: Application of Integrable Systems to Phase Transitions. pp. 161–189. Springer (2013)

  50. Ji, Y., Meng, F., Jin, J., et al.: Quantum version of MMSE-based massive MIMO uplink detection. Quant. Inf. Process. 67, 1–28 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 61871111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Tao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, FX., Yu, XT. & Zhang, ZC. Improved quantum algorithm for MMSE-based massive MIMO uplink detection. Quantum Inf Process 19, 267 (2020). https://doi.org/10.1007/s11128-020-02768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02768-5

Keywords

Navigation