Abstract
In this paper, we propose an improved quantum algorithm for the minimum mean square error-based massive multiple-input multiple-output (MIMO) uplink. The new algorithm can reduce the dependency on the assumptions on the input vector, the channel matrix entries and the low rank of the channel matrix, which are indispensable in our previous results. Our improved quantum algorithm applies the quantum block-encoding technology, which depends on the quantum-accessible data structure. Moreover, we design an efficient algorithm for outputting classical data, which makes sure that output data can be utilized in classical devices. Both theoretically mathematical analyses and simulation realizations in massive MIMO systems confirm the applicability of the improved quantum algorithm. With desired precision, and theoretical and numerical analysis, our improved quantum algorithm can achieve a quadratic or even an exponential speedup over classical counterparts.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590 (2010)
Rusek, F., Persson, D., Lau, B.K., Larsson, E.G., Marzetta, T.L., Edfors, O., Tufvesson, F.: Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)
Marzetta, T.L., Larsson, E.G., Edfors, O., Tufvesson, F.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)
Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8(5), 742–758 (2014)
Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)
Yifei, Y., Longming, Z.: Application scenarios and enabling technologies of 5G. China Commun. 11(11), 69–79 (2014)
Yang, S., Hanzo, L.: Fifty years of MIMO detection: the road to large-scale MIMOs. IEEE Commun. Surv. Tutor. 17(4), 1941–1988 (2015)
Verdu, S.: Minimum probability of error for asynchronous Gaussian multiple-access channels. IEEE Trans. Inf. Theory 32(1), 85–96 (1986)
Van Etten, W.: An optimum linear receiver for multiple channel digital transmission systems. IEEE Trans. Commun. 23(8), 828–834 (1975)
Shnidman, D.: A generalized Nyquist criterion and an optimum linear receiver for a pulse modulation system. Bell Syst. Tech. J. 46(9), 2163–2177 (1967)
Prabhu, H., Rodrigues, J., Edfors, O., Rusek, F.: Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC) 2013, pp. 2710–2715. IEEE
Mueller, A., Kammoun, A., Björnson, E., Debbah, M.: Linear precoding based on polynomial expansion: reducing complexity in massive MIMO. EURASIP J. Wirel. Commun. Netw. 2016(1), 63 (2016)
Yin, B., Wu, M., Cavallaro, J.R., Studer, C.: Conjugate gradient-based soft-output detection and precoding in massive MIMO systems. In: 2014 IEEE Global Communications Conference (GLOBECOM) 2014, pp. 3696–3701. IEEE
Dai, L., Gao, X., Su, X., Han, S., Chih-Lin, I., Wang, Z.: Low-complexity soft-output signal detection based on Gauss–Seidel method for uplink multiuser large-scale MIMO systems. IEEE Trans. Veh. Technol. 64(10), 4839–4845 (2015)
Wu, M., Dick, C., Cavallaro, J.R., Studer, C.: FPGA design of a coordinate descent data detector for large-scale MU-MIMO. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS) 2016, pp. 1894–1897. IEEE
Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS) 1994, pp. 124–134. IEEE Computer Society
Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. arXiv:quant-ph/9605043 (1996)
Duan, B., Yuan, J., Xu, J., Li, D.: Quantum algorithm and quantum circuit for A-optimal projection: dimensionality reduction. Phys. Rev. A 99(3), 032311 (2019)
Zhao, Z., Fitzsimons, J.K., Osborne, M.A., Roberts, S.J., Fitzsimons, J.F.: Quantum algorithms for training Gaussian Process. (2018)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
Kerenidis, I., Landman, J., Luongo, A., Prakash, A.: q-Means: A Quantum Algorithm for Unsupervised Machine Learning. arXiv:1812.03584 (2018)
Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96(3), 032301 (2017)
Kerenidis, I., Prakash, A.: Quantum Recommendation Systems. arXiv:1603.08675 (2016)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)
Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18(7), 073011 (2016)
Wiebe, N., Kapoor, A., Svore, K.M.: Quantum nearest-neighbor algorithms for machine learning. Quant. Inf. Comput. 15, 318–358 (2015)
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)
Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)
Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2), 022342 (2016)
Wang, G.: Quantum algorithm for linear regression. Phys. Rev. A 96(1), 012335 (2017)
Wang, C., Wossnig, L.: A Quantum Algorithm for Simulating Non-sparse Hamiltonians. arXiv:1803.08273 (2018)
Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120(5), 050502 (2018)
Yu, C.H., Gao, F., Wen, Q.Y.: Quantum algorithms for ridge regression (2017)
Meng, F.-X., Yu, X.-T., Xiang, R.-Q., Zhang, Z.-C.: Quantum algorithm for spectral regression for regularized subspace learning. IEEE Access 7, 4825–4832 (2018)
Li, G., Wang, Y., Luo, Y., Feng, Y.: Quantum Data Fitting Algorithm for Non-sparse Matrices. arXiv:1907.06949 (2019)
Botsinis, P., Ng, S.X., Hanzo, L.: Low-complexity iterative quantum multi-user detection in SDMA systems. In: 2014 IEEE International Conference on Communications (ICC) 2014, pp. 5592–5597. IEEE
Abdullah, Z., Tsimenidis, C.C., Johnston, M.: Quantum-inspired Tabu Search algorithm for antenna selection in massive MIMO systems. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC) 2018, pp. 1–6. IEEE
Alanis, D., Botsinis, P., Ng, S.X., Hanzo, L.: Quantum-assisted routing optimization for self-organizing networks. IEEE Access 2, 614–632 (2014)
Botsinis, P., Alanis, D., Babar, Z., Nguyen, H.V., Chandra, D., Ng, S.X., Hanzo, L.: Quantum-aided multi-user transmission in non-orthogonal multiple access systems. IEEE Access 4, 7402–7424 (2016)
Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590 (2010)
Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019)
Chakraborty, S., Gilyén, A., Jeffery, S.: The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. arXiv:1804.01973 (2018)
Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing 2019, pp. 193–204. ACM
Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)
Van Apeldoorn, J., Gilyén, A., Gribling, S., de Wolf, R.: Quantum SDP-solvers: better upper and lower bounds. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) 2017, pp. 403–414. IEEE
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)
Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys. Rev. A 78(5), 052310 (2008)
Tulino, A.M., Verdú, S.: Random matrix theory and wireless communications. Found. Trends Commun. Inf. Theory 1(1), 1–182 (2004)
Wang, C.: Marcenko–Pastur distribution and McKay’s law. In: Application of Integrable Systems to Phase Transitions. pp. 161–189. Springer (2013)
Ji, Y., Meng, F., Jin, J., et al.: Quantum version of MMSE-based massive MIMO uplink detection. Quant. Inf. Process. 67, 1–28 (2020)
Acknowledgements
This work was supported by the National Science Foundation of China (No. 61871111).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Meng, FX., Yu, XT. & Zhang, ZC. Improved quantum algorithm for MMSE-based massive MIMO uplink detection. Quantum Inf Process 19, 267 (2020). https://doi.org/10.1007/s11128-020-02768-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02768-5